Open Access

Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances

  • Alexander O. Govorov1Email author,
  • Wei Zhang1,
  • Timur Skeini1,
  • Hugh Richardson1,
  • Jaebeom Lee2 and
  • Nicholas A. Kotov2
Nanoscale Research Letters20061:84

DOI: 10.1007/s11671-006-9015-7

Published: 26 July 2006

Abstract

We describe the peculiar conditions under which optically driven gold nanoparticles (NPs) can significantly increase temperature or even melt a surrounding matrix. The heating and melting processes occur under light illumination and involve the plasmon resonance. For the matrix, we consider water, ice, and polymer. Melting and heating the matrix becomes possible if a nanoparticle size is large enough. Significant enhancement of the heating effect can appear in ensembles of NPs due to an increase of a volume of metal and electric-field amplification.

Keywords

Metal nanoparticles Heat generation Plasmons

[117]

Declarations

Acknowledgements

This work was supported by the NanoBioTechnology Initiative at Ohio University.

Authors’ Affiliations

(1)
Department of Physics and Astronomy, Ohio University
(2)
Department of Chemical Engineering, Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Michigan

References

  1. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi. SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI: Phys. Rev. Lett.. 2002, 89: 203002. COI number [1:CAS:528:DC%2BD38XosVenur4%3D] 10.1103/PhysRevLett.89.203002View ArticleGoogle Scholar
  2. Lee. J, Govorov AO, Dulka J, Kotov NA: Nano Lett.. 2004, 4: 2323. COI number [1:CAS:528:DC%2BD2cXpt1Cqtbg%3D] 10.1021/nl048669hView ArticleGoogle Scholar
  3. Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B: PNAS. 2003, 100: 11350. COI number [1:CAS:528:DC%2BD3sXotFKms78%3D] 10.1073/pnas.1534635100View ArticleGoogle Scholar
  4. Gobin AM, O’Neal DP, Watkins DM, Halas NJ, Drezek RA, West JL: Lasers Surg. Med.. 2005, 37: 123. 10.1002/lsm.20206View ArticleGoogle Scholar
  5. Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, Mohwald H, Sukhorukov GB: Nano Lett.. 2005, 5: 1372. COI number [1:CAS:528:DC%2BD2MXlsV2qsrY%3D] 10.1021/nl050693nView ArticleGoogle Scholar
  6. Pitsillides CM, Joe EK, Xunbin Wei, Anderson RR, Lin CP: Biophys. J.. 2003, 84: 4023. COI number [1:CAS:528:DC%2BD3sXksVKnsbg%3D] 10.1016/S0006-3495(03)75128-5View ArticleGoogle Scholar
  7. Lee J, Govorov AO, Kotov NA: Angewandte Chemie. 2005, 117: 7605. 10.1002/ange.200501264View ArticleGoogle Scholar
  8. H.H. Richardson, Z.N. Hickman, A.O. Govorov, A.C. Thomas, W. Zhang, M.E. Kordesch, Nano Lett. 6, 783 (2006)View ArticleGoogle Scholar
  9. Carslaw HS, Jaeger JC: Conduction of Heat in Solids. Oxford University Press, London; 1993.Google Scholar
  10. Landau LD, Lifshitz EM: Electrodynamics of Continuous Media. Pergamon Press, New York; 1960.Google Scholar
  11. Palik ED: Handbook of Optical Constants of Solids. Academic Press, New York; 1985.Google Scholar
  12. Munro JC, Frank CW: Langmuir. 2004, 20: 3339. COI number [1:CAS:528:DC%2BD2cXoslSgtLo%3D] 10.1021/la048378oView ArticleGoogle Scholar
  13. Persson B, Lang N: Phys. Rev. B. 1982, 26: 5409. COI number [1:CAS:528:DyaL3sXhtValsQ%3D%3D] 10.1103/PhysRevB.26.5409View ArticleGoogle Scholar
  14. Peng S, Fuchs A, Wirtz RA: J. Appl. Polymer Sci.. 2004, 93: 1240. COI number [1:CAS:528:DC%2BD2cXkvFOrtb8%3D] 10.1002/app.20578View ArticleGoogle Scholar
  15. Dimarzio EA, Dowell F: J. Appl. Phys.. 1979, 50: 6061. COI number [1:CAS:528:DyaL3cXit12qsw%3D%3D] 10.1063/1.325794View ArticleGoogle Scholar
  16. A.O. Govorov, G. Bryant, W. Zhang, T. Skieni, J. Lee, N.A. Kotov, J.M. Slocik, R.R. Naik, Nano Lett. 6, 984 (2006)View ArticleGoogle Scholar
  17. Nie S, Emory SR: Science. 1997, 275: 1102. COI number [1:CAS:528:DyaK2sXhtlGlsL4%3D] 10.1126/science.275.5303.1102View ArticleGoogle Scholar

Copyright

© to the authors 2006