/v1/supplement/title
Open Access

Thermal decomposition as route for silver nanoparticles

  • S. Navaladian1,
  • B. Viswanathan1Email author,
  • R. P. Viswanath1 and
  • T. K. Varadarajan1
Nanoscale Research Letters20062:44

DOI: 10.1007/s11671-006-9028-2

Received: 4 September 2006

Accepted: 18 October 2006

Published: 28 November 2006

Abstract

Single crystalline silver nanoparticles have been synthesized by thermal decomposition of silver oxalate in water and in ethylene glycol. Polyvinyl alcohol (PVA) was employed as a capping agent. The particles were spherical in shape with size below 10 nm. The chemical reduction of silver oxalate by PVA was also observed. Increase of the polymer concentration led to a decrease in the size of Ag particles. Ag nanoparticle was not formed in the absence of PVA. Antibacterial activity of the Ag colloid was studied by disc diffusion method.

Keywords

Ag nanoparticles Synthesis Silver oxalate Thermal decomposition E. coli

[116]

Declarations

Acknowledgment

We thank Prof. G. Sathyanarayana, Department of Biotechnology, IIT Madras, Chennai-36, for providing the facilities to carry out antibacterial study.

Authors’ Affiliations

(1)
National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras

References

  1. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A: Langmuir. 2000, 16: 6396. COI number [1:CAS:528:DC%2BD3cXks1WntL8%3D] 10.1021/la991507uView ArticleGoogle Scholar
  2. Forster S, Antonietti M: Adv. Mater.. 1998, 10: 195. 10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-VView ArticleGoogle Scholar
  3. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP: Chem. Soc. Rev.. 2000, 29: 27. COI number [1:CAS:528:DC%2BD3cXitFarsw%3D%3D] 10.1039/a904518jView ArticleGoogle Scholar
  4. Anderson DJ: J. Phys. Chem. B. 2006, 110: 13722. COI number [1:CAS:528:DC%2BD28XmtVygs7c%3D] 10.1021/jp055243yView ArticleGoogle Scholar
  5. Elechiguerra JL, Burt JL, Morones JR, Bragado AC, Gao X, Lara HH, Yacaman MJ: J. Nanobiotechnol.. 2005, 3: 6. 10.1186/1477-3155-3-6View ArticleGoogle Scholar
  6. Lee DK, Kang YS: ETRI Journal. 2004, 26: 3.Google Scholar
  7. Boldyrev VV: Thermo. Chim. Acta.. 2002, 388: 63. COI number [1:CAS:528:DC%2BD38Xkt1emurY%3D] 10.1016/S0040-6031(02)00044-8View ArticleGoogle Scholar
  8. Sondi I, Sondi BS: J. Colloid. Interface Sci.. 2004, 275: 177. COI number [1:CAS:528:DC%2BD2cXktFKktL4%3D] 10.1016/j.jcis.2004.02.012View ArticleGoogle Scholar
  9. Kimura M, Ishiguro H, Tsukahara K: J. Phys. Chem.. 1990, 94: 4106. COI number [1:CAS:528:DyaK3cXitFGqtb4%3D] 10.1021/j100373a041View ArticleGoogle Scholar
  10. Milazzo G, Caroli S, Sharma VK: Tables of Standard Electrode Potentials. Ichester, Wiley; 1978.Google Scholar
  11. Naumov D, Boldyreva EV, Podberezskayu NV, Howard JAK: Solid state Ionics. 1997, 101: 1315. 10.1016/S0167-2738(97)00392-5View ArticleGoogle Scholar
  12. Leiga A: J. Phys. Chem.. 1996, 70: 3260. 10.1021/j100882a040View ArticleGoogle Scholar
  13. Sondi I, Dan Goia V, Matijevic E: J Colloid. Interface Sci.. 2003, 260: 75. COI number [1:CAS:528:DC%2BD3sXis1Cks7Y%3D] 10.1016/S0021-9797(02)00205-9View ArticleGoogle Scholar
  14. Porel S, Singh S, Radhakrishnan TP: Chem. Commun.. 2005, 18: 2387. 10.1039/b500536aView ArticleGoogle Scholar
  15. Zhang J, Li X, Liu K, Cui Z, Zhang G, Zhao B, Yang B: J. Colloid Interface Sci.. 2002, 255: 115. COI number [1:CAS:528:DC%2BD38XovVygsrc%3D] 10.1006/jcis.2002.8615View ArticleGoogle Scholar
  16. Weast RC: Handbook of chemistry and physics. CRC press, Florida; 1978.Google Scholar

Copyright

© to the authors 2006