Thermal decomposition as route for silver nanoparticles

  • S. Navaladian1,

    Affiliated with

    • B. Viswanathan1Email author,

      Affiliated with

      • R. P. Viswanath1 and

        Affiliated with

        • T. K. Varadarajan1

          Affiliated with

          Nanoscale Research Letters20062:44

          DOI: 10.1007/s11671-006-9028-2

          Received: 4 September 2006

          Accepted: 18 October 2006

          Published: 28 November 2006

          Abstract

          Single crystalline silver nanoparticles have been synthesized by thermal decomposition of silver oxalate in water and in ethylene glycol. Polyvinyl alcohol (PVA) was employed as a capping agent. The particles were spherical in shape with size below 10 nm. The chemical reduction of silver oxalate by PVA was also observed. Increase of the polymer concentration led to a decrease in the size of Ag particles. Ag nanoparticle was not formed in the absence of PVA. Antibacterial activity of the Ag colloid was studied by disc diffusion method.

          Keywords

          Ag nanoparticles Synthesis Silver oxalate Thermal decomposition E. coli

          [116]

          Declarations

          Acknowledgment

          We thank Prof. G. Sathyanarayana, Department of Biotechnology, IIT Madras, Chennai-36, for providing the facilities to carry out antibacterial study.

          Authors’ Affiliations

          (1)
          National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras

          References

          1. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A: Langmuir. 2000, 16: 6396. COI number [1:CAS:528:DC%2BD3cXks1WntL8%3D] 10.1021/la991507uView Article
          2. Forster S, Antonietti M: Adv. Mater.. 1998, 10: 195. 10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-VView Article
          3. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP: Chem. Soc. Rev.. 2000, 29: 27. COI number [1:CAS:528:DC%2BD3cXitFarsw%3D%3D] 10.1039/a904518jView Article
          4. Anderson DJ: J. Phys. Chem. B. 2006, 110: 13722. COI number [1:CAS:528:DC%2BD28XmtVygs7c%3D] 10.1021/jp055243yView Article
          5. Elechiguerra JL, Burt JL, Morones JR, Bragado AC, Gao X, Lara HH, Yacaman MJ: J. Nanobiotechnol.. 2005, 3: 6. 10.1186/1477-3155-3-6View Article
          6. Lee DK, Kang YS: ETRI Journal. 2004, 26: 3.
          7. Boldyrev VV: Thermo. Chim. Acta.. 2002, 388: 63. COI number [1:CAS:528:DC%2BD38Xkt1emurY%3D] 10.1016/S0040-6031(02)00044-8View Article
          8. Sondi I, Sondi BS: J. Colloid. Interface Sci.. 2004, 275: 177. COI number [1:CAS:528:DC%2BD2cXktFKktL4%3D] 10.1016/j.jcis.2004.02.012View Article
          9. Kimura M, Ishiguro H, Tsukahara K: J. Phys. Chem.. 1990, 94: 4106. COI number [1:CAS:528:DyaK3cXitFGqtb4%3D] 10.1021/j100373a041View Article
          10. Milazzo G, Caroli S, Sharma VK: Tables of Standard Electrode Potentials. Ichester, Wiley; 1978.
          11. Naumov D, Boldyreva EV, Podberezskayu NV, Howard JAK: Solid state Ionics. 1997, 101: 1315. 10.1016/S0167-2738(97)00392-5View Article
          12. Leiga A: J. Phys. Chem.. 1996, 70: 3260. 10.1021/j100882a040View Article
          13. Sondi I, Dan Goia V, Matijevic E: J Colloid. Interface Sci.. 2003, 260: 75. COI number [1:CAS:528:DC%2BD3sXis1Cks7Y%3D] 10.1016/S0021-9797(02)00205-9View Article
          14. Porel S, Singh S, Radhakrishnan TP: Chem. Commun.. 2005, 18: 2387. 10.1039/b500536aView Article
          15. Zhang J, Li X, Liu K, Cui Z, Zhang G, Zhao B, Yang B: J. Colloid Interface Sci.. 2002, 255: 115. COI number [1:CAS:528:DC%2BD38XovVygsrc%3D] 10.1006/jcis.2002.8615View Article
          16. Weast RC: Handbook of chemistry and physics. CRC press, Florida; 1978.

          Copyright

          © to the authors 2006