Multiscale modeling and simulation of nanotube-based torsional oscillators

  • Shaoping Xiao1Email author and

    Affiliated with

    • Wenyi Hou1

      Affiliated with

      Nanoscale Research Letters20062:54

      DOI: 10.1007/s11671-006-9030-8

      Received: 11 October 2006

      Accepted: 25 October 2006

      Published: 28 November 2006

      Abstract

      In this paper, we propose the first numerical study of nanotube-based torsional oscillators via developing a new multiscale model. The edge-to-edge technique was employed in this multiscale method to couple the molecular model, i.e., nanotubes, and the continuum model, i.e., the metal paddle. Without losing accuracy, the metal paddle was treated as the rigid body in the continuum model. Torsional oscillators containing (10,0) nanotubes were mainly studied. We considered various initial angles of twist to depict linear/nonlinear characteristics of torsional oscillators. Furthermore, effects of vacancy defects and temperature on mechanisms of nanotube-based torsional oscillators were discussed.

      Keywords

      Nanotube Torsional oscillator Multiscale Vacancy defects Temperature

      [114]

      Declarations

      Acknowledgments

      The authors acknowledge support from the Army Research Office (Contract: # W911NF-06-C-0140) and the National Science Foundation (Grant # 0630153).

      Authors’ Affiliations

      (1)
      Department of Mechanical and Industrial Engineering, Center for Computer-Aided Design, The University of Iowa

      References

      1. Iijima S: Nature. 1991, 354: 56. COI number [1:CAS:528:DyaK38Xmt1Ojtg%3D%3D] 10.1038/354056a0View Article
      2. Popov VN: Mater. Sci. Eng. R. 2004, 43: 61. 10.1016/j.mser.2003.10.001View Article
      3. Kim P, Lieber CM: Science. 1999, 286: 2148. COI number [1:CAS:528:DyaK1MXotFGrtrY%3D] 10.1126/science.286.5447.2148View Article
      4. Srivastava D: Nanotechnology. 1997, 8: 186. COI number [1:CAS:528:DyaK1cXjtVejtQ%3D%3D] 10.1088/0957-4484/8/4/005View Article
      5. Kang JW, Hwang HJ: Nanotechnology. 2004, 15: 1633. COI number [1:CAS:528:DC%2BD2MXhsV2luw%3D%3D] 10.1088/0957-4484/15/11/045View Article
      6. Xiao SP, Andersen D, Han R, Hou WY: Int. J. Theo. Comput. Nano.. 2006, 3: 143.
      7. Williams PA, Papadakis SJ, Patel AM, Falvo MR, Washburn S, Superfine R: Phys. Rev. Lett.. 2002, 89: 255502. COI number [1:STN:280:DC%2BD38jitl2ntw%3D%3D] 10.1103/PhysRevLett.89.255502View Article
      8. Williams PA, Papadakis SJ, Patel AM, Falvo MR, Washburn S, Superfine R: Phys. Rev. Lett.. 2003, 82: 805. COI number [1:CAS:528:DC%2BD3sXotlSrsw%3D%3D]
      9. Papadakis SJ, Hall AR, Williams PA, Vicci L, Falvo MR, Superfine R, Washburn S: Phys. Rev. Lett.. 2004, 93: 146101. COI number [1:STN:280:DC%2BD2crlsVShtg%3D%3D] 10.1103/PhysRevLett.93.146101View Article
      10. Xiao SP, Belytschko T: Comp. Meth. Appl. Mech. Engrg.. 2004, 193: 1645. 10.1016/j.cma.2003.12.053View Article
      11. Belytschko T, Xiao SP: Int. J. Mult. Comput. Engrg.. 2003, 1: 115. 10.1615/IntJMultCompEng.v1.i1.100View Article
      12. Belytschko T, Xiao SP, Schatz G, Ruoff R: Phys. Rev. B. 2002, 65: 235430. 10.1103/PhysRevB.65.235430View Article
      13. Mielke SL, Troya D, Zhang SL, Li JL, Xiao SP, Car R, Ruoff RS, Schatz GC, Belytschko T: Chem. Phys. Lett.. 2004, 390: 413. COI number [1:CAS:528:DC%2BD2cXktVaitr4%3D] 10.1016/j.cplett.2004.04.054View Article
      14. Hoover WG: Phys. Rev. A. 1985, 31: 1695. 10.1103/PhysRevA.31.1695View Article

      Copyright

      © to the authors 2006