Open Access

Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

  • FabriceOlivier Morin1Email author,
  • Franck Rose2,
  • Pascal Martin3,
  • Mehmet C Tarhan4,
  • Hideki Kawakatsu1 and
  • Hiroyuki Fujita1
Nanoscale Research Letters20072:135

DOI: 10.1007/s11671-007-9044-x

Received: 13 December 2006

Accepted: 4 February 2007

Published: 13 March 2007

Abstract

Microtubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

Keywords

Adsorption HOPG Microtubules Self-assembly

[145]

(See supplementary material 1)

Declarations

Acknowledgments

F.O.M. and F.R. acknowledge the financial support of the Japan Society for the Promotion of Science (JSPS). P.M. acknowledges the financial support of the Centre National de la Recherche Scientifique (CNRS). F.O.M. and M.C.T. acknowledge prof. S. Takeuchi for permitting the use of ultra-centrifuges.

Authors’ Affiliations

(1)
LIMMS-CNRS/IIS, UMI 2820, University of Tokyo
(2)
Materials Sciences Division, L. Berkeley National Laboratory
(3)
L2MP, Institut Supérieur d’Electronique et du Numérique Maison des Technologies
(4)
IIS, University of Tokyo

References

  1. Hirokawa N, Takemura R: Nature Rev. Neurosc.. 1995, 6: 201–214. 10.1038/nrn1624View ArticleGoogle Scholar
  2. Fritzsche W, Köhler JM, Böhm KJ, Unger E, Wagner T, Kirsch R, Mertig M, Pompe W: Nanotechnology. 1999, 10: 331–335. 10.1088/0957-4484/10/3/317View ArticleGoogle Scholar
  3. Fritzsche W, Böhm KJ, Unger E, Köhler JM: Appl. Phys. Lett.. 1999, 75: 2854–2856. COI number [1:CAS:528:DyaK1MXmslOgtLk%3D] 10.1063/1.125172View ArticleGoogle Scholar
  4. Behrens S, Rahn K, Habicht W, Böhm KJ, Rösner H, Dinjus E, Unger E: Advanced Mat.. 2002, 14: 1621–1625. COI number [1:CAS:528:DC%2BD38XpsFOrtLk%3D] 10.1002/1521-4095(20021118)14:22<1621::AID-ADMA1621>3.0.CO;2-DView ArticleGoogle Scholar
  5. Behrens S, Habicht W, Wu J, Unger E: Surf. Interf. Anal 2006, 38: 1014–1018. COI number [1:CAS:528:DC%2BD28Xmt1ejsbc%3D] 10.1002/sia.2334View ArticleGoogle Scholar
  6. Jia L, Moorjani SG, Jackson TN, Hancock WO: Biomed. Microdev.. 2004, 6: 67–74. COI number [1:CAS:528:DC%2BD2cXms1equw%3D%3D] 10.1023/B:BMMD.0000013368.89455.8dView ArticleGoogle Scholar
  7. Hess H, Bachand GD, Vogel V: Chem. Eur. J.. 2004, 10: 2110–2116. COI number [1:CAS:528:DC%2BD2cXktVGgs7g%3D] 10.1002/chem.200305712View ArticleGoogle Scholar
  8. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH: Science. 2003, 301: 1882–1884. COI number [1:CAS:528:DC%2BD3sXnsFSgtr0%3D] 10.1126/science.1089389View ArticleGoogle Scholar
  9. Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC: Nano Lett.. 2006, 6: 1502–1504. COI number [1:CAS:528:DC%2BD28Xlt1yqur0%3D] 10.1021/nl060994cView ArticleGoogle Scholar
  10. Stracke R, Burghold J, Schacht HJ, Böhm KJ, Unger E: Nanotechnology. 2000, 11: 52–56. COI number [1:CAS:528:DC%2BD3cXltFKgsbo%3D] 10.1088/0957-4484/11/2/302View ArticleGoogle Scholar
  11. Yokokawa R, Takeuchi S, Kon T, Nishiura M, Sutoh K, Fujita H: Nano Lett.. 2004, 4: 2265–2270. COI number [1:CAS:528:DC%2BD2cXoslCqsLo%3D] 10.1021/nl048851iView ArticleGoogle Scholar
  12. Limberis L, Magda JJ, Stewart RJ: Nano Lett.. 2001, 1: 277–280. COI number [1:CAS:528:DC%2BD3MXjt1Ojsbc%3D] 10.1021/nl0155375View ArticleGoogle Scholar
  13. Yang Y, Deymier PA, Wang L, Guzman R, Hoying JB, McLaughlin HJ, Smith SD, Jongewaard IN: Biotech. Progress. 2006, 22: 303–312. 10.1021/bp050150jView ArticleGoogle Scholar
  14. Roos W, Ulmer J, Gräter S, Surrey T, Spatz JP: Nano Lett.. 2005, 5: 2630–2634. COI number [1:CAS:528:DC%2BD2MXht1SmtrfE] 10.1021/nl051865jView ArticleGoogle Scholar
  15. Muthukrishnan G, Roberts CA, Chen Y-C, Zahn JD, Hancock WO: Nano Lett.. 2004, 4: 2127–2132. COI number [1:CAS:528:DC%2BD2cXnvF2qs7Y%3D] 10.1021/nl048816bView ArticleGoogle Scholar
  16. Vinckier A, Heyvaert I, D’Hoore A, McKittrick T, Haesendonck CV, Engelborghs Y, Hellemans L: Ultramicroscopy. 1995, 57: 337–343. COI number [1:CAS:528:DyaK2MXksV2ntrk%3D] 10.1016/0304-3991(94)00194-RView ArticleGoogle Scholar
  17. de Pablo PJ, Schaap IAT, Schmidt CF: Nanotechnology. 2003, 14: 143–146. 10.1088/0957-4484/14/2/308View ArticleGoogle Scholar
  18. Vater W, Fritzsche W, Schaper A, Böhm KJ, Unger E, Jovin TM: J. Cell Sc.. 1995, 108: 1063–1069. Google Scholar
  19. Yang Y, Guzman R, Deymier PA, Umnov M, Hoying J, Raghavan S, Palusinski O, Zelinski BJJ: J. Nanosc. Nanotech.. 2005, 5: 2050–2056. COI number [1:CAS:528:DC%2BD2MXhtlWnu77K] 10.1166/jnn.2005.510View ArticleGoogle Scholar
  20. Fritzsche W, Böhm KJ, Unger E, Köhler JM: Nanotechnology. 1998, 9: 177–183. COI number [1:CAS:528:DyaK1cXntFajs7c%3D] 10.1088/0957-4484/9/3/006View ArticleGoogle Scholar
  21. Maillard M, Motte L, Pileni M-P: Advanced Mat.. 2001, 13: 200–204. COI number [1:CAS:528:DC%2BD3MXhs12qu7s%3D] 10.1002/1521-4095(200102)13:3<200::AID-ADMA200>3.0.CO;2-PView ArticleGoogle Scholar
  22. Rabani E, Reichman DR, Geissler PL, Brus LE: Nature. 2003, 426: 271–274. COI number [1:CAS:528:DC%2BD3sXptVOisb0%3D] 10.1038/nature02087View ArticleGoogle Scholar
  23. Ray MA, Kim H, Jia L: Langmuir. 2005, 21: 4786–4789. COI number [1:CAS:528:DC%2BD2MXjsFahur0%3D] 10.1021/la050165rView ArticleGoogle Scholar
  24. Tabony J, Glade N, Demongeot J, Papaseit C: Langmuir. 2002, 18: 7196–7207. COI number [1:CAS:528:DC%2BD38XmtVShtb0%3D] 10.1021/la0255875View ArticleGoogle Scholar
  25. Nogales E, Whittaker M, Milligan RA, Downing KH: Cell. 1999, 96: 79–88. COI number [1:CAS:528:DyaK1MXmslagtA%3D%3D] 10.1016/S0092-8674(00)80961-7View ArticleGoogle Scholar
  26. Lin Z, Granick S: J. Am. Chem. Soc.. 2005, 127: 2816–2817. COI number [1:CAS:528:DC%2BD2MXht1Orurw%3D] 10.1021/ja044792zView ArticleGoogle Scholar
  27. Hong SW, Xu J, Xia J, Lin Z, Qiu F, Yang Y: Chem. Mat.. 2005, 17: 6223–6226. COI number [1:CAS:528:DC%2BD2MXht1Smtr3E] 10.1021/cm052078qView ArticleGoogle Scholar
  28. Dalton AB, Ortiz-Acevedo A, Zorbas V, Brunner E, Sampson WM, Collins S, Razal JM, Miki Yoshida M, Baughman RH, Draper RK, Musselman IH, Jose-Yacaman M, Dieckmann GR: Adv. Funct. Mat.. 2004, 14: 1147–1151. COI number [1:CAS:528:DC%2BD2MXlvV2ktg%3D%3D] 10.1002/adfm.200400190View ArticleGoogle Scholar
  29. Yokokawa R, Yoshida Y, Takeuchi S, Kon T, Fujita H: Nanotechnology. 2006, 17: 289–294. COI number [1:CAS:528:DC%2BD28XitVSrs78%3D] 10.1088/0957-4484/17/1/049View ArticleGoogle Scholar
  30. Tang JX, Wong S, Tran PT, Janmey PA: Ber Bunsenges. Phys. Chem.. 1996, 100: 796–806. View ArticleGoogle Scholar
  31. Tang JX, Ito T, Tao T, Straub P, Janmey PA: Biochemistry. 1997, 36: 12600–12607. COI number [1:CAS:528:DyaK2sXmtFCks74%3D] 10.1021/bi9711386View ArticleGoogle Scholar
  32. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA: Nature. 1997, 389: 827–829. COI number [1:CAS:528:DyaK2sXmvFSktrY%3D] 10.1038/39827View ArticleGoogle Scholar
  33. Tarasevich YY: Phys. Uspekhi. 2004, 47: 717–728. COI number [1:CAS:528:DC%2BD2cXhtVKitbfO] 10.1070/PU2004v047n07ABEH001758View ArticleGoogle Scholar
  34. Needleman DJ, Ojeda-Lopez MA, Raviv U, Ewert K, Miller HP, Wilson L, Safinya CR: Proc. Nat. Acad. Sc. USA. 2004, 101: 16099–16103. COI number [1:CAS:528:DC%2BD2cXhtVWks7rJ] 10.1073/pnas.0406076101View ArticleGoogle Scholar
  35. Smalyukh II, Zribi OV, Butler JC, Lavrentovich OD, Wong GCL: Phys. Rev. Lett.. 2006, 96: 177801. 10.1103/PhysRevLett.96.177801View ArticleGoogle Scholar
  36. Zribi OV, Kyung H, Golestanian R, Liverpool TB, Wong GCL: Phys. Rev. E. 2006, 73: 031911. 10.1103/PhysRevE.73.031911View ArticleGoogle Scholar
  37. Angelini TE, Liang H, Wriggers W, Wong GCL: Eur. Phys. J. E. 2005, 16: 389–400. COI number [1:CAS:528:DC%2BD2MXktFOis7c%3D] 10.1140/epje/i2004-10097-9View ArticleGoogle Scholar
  38. Schwartz LW, Roy RV, Eley RR, Petrashy S: J. Coll. Interf. Sc.. 2001, 234: 363–374. COI number [1:CAS:528:DC%2BD3MXmt1Wmtg%3D%3D] 10.1006/jcis.2000.7312View ArticleGoogle Scholar
  39. Kajiya T, Nishitani E, Yamaue T, Doi M: Phys. Rev. E. 2006, 73: 011601. 10.1103/PhysRevE.73.011601View ArticleGoogle Scholar
  40. Shiba K, Honma T, Minamisawa T, Nishiguchi K, Noda T: EMBO Reports. 2003, 4: 148–153. COI number [1:CAS:528:DC%2BD3sXhslSqtLY%3D] 10.1038/sj.embor.embor737View ArticleGoogle Scholar
  41. Szabó B, Vicsek T: Phys. Rev. E. 2003, 67: 011908. 10.1103/PhysRevE.67.011908View ArticleGoogle Scholar
  42. Maubach G, Fritzsche W: Nano Lett.. 2004, 4: 607–611. COI number [1:CAS:528:DC%2BD2cXhvVegt7g%3D] 10.1021/nl049968+View ArticleGoogle Scholar
  43. Heim T, Preuss S, Gerstmayer B, Bosio A, Blossey R: J. Phys. Cond. Matt.. 2005, 17: S703-S716. COI number [1:CAS:528:DC%2BD2MXjs12ktbo%3D] 10.1088/0953-8984/17/9/025View ArticleGoogle Scholar
  44. Rose F, Martin P, Fujita H, Kawakatsu H: Nanotechnology. 2006, 17: 3325–3332. COI number [1:CAS:528:DC%2BD28XosFajur8%3D] 10.1088/0957-4484/17/13/041View ArticleGoogle Scholar
  45. A.M. Oliveira Brett, DNA-based biosensors. In: Biosensors and Modern Biospecific Analytical Techniques, Volume XLIV (Comprehensive Analytical Chemistry), ed. by L. Gorton, (Elsevier Science: Amsterdam, 2005)Google Scholar

Copyright

© to the authors 2007