Initial susceptibility and viscosity properties of low concentration ε-Fe3N based magnetic fluid

  • Wei Huang1Email author,

    Affiliated with

    • Jianmin Wu1,

      Affiliated with

      • Wei Guo1,

        Affiliated with

        • Rong Li1 and

          Affiliated with

          • Liya Cui1

            Affiliated with

            Nanoscale Research Letters20072:155

            DOI: 10.1007/s11671-007-9047-7

            Received: 10 December 2006

            Accepted: 8 February 2007

            Published: 13 March 2007

            Abstract

            In this paper, the initial susceptibility of ε-Fe3N magnetic fluid at volume concentrations in the range Φ = 0.0 ∼ 0.0446 are measured. Compared with the experimental initial susceptibility, the Langevin, Weiss and Onsager susceptibility were calculated using the data obtained from the low concentration ε-Fe3N magnetic fluid samples. The viscosity of the ε-Fe3N magnetic fluid at the same concentrations is measured. The result shows that, the initial susceptibility of the low concentration ε-Fe3N magnetic fluid is proportional to the concentration. A linear relationship between relative viscosity and the volume fraction is observed when the concentration Φ < 0.02.

            Keywords

            Magnetic fluid Nano-material Initial susceptibility Viscosity

            [116]

            Declarations

            Acknowledgements

            This work was supported by the national 863 project (No: 2002AA302608), from the Ministry of Science and Technology, China.

            Authors’ Affiliations

            (1)
            Department of Functional Material Research, Central Iron & Steel Research Institute

            References

            1. Socoliuc V, Bica D, Vékás L: J. Coll. Int. Sci.. 2003, 264: 141. COI number [1:CAS:528:DC%2BD3sXls1Skt7Y%3D] 10.1016/S0021-9797(03)00426-0View Article
            2. Bacri JC, Perzynski R, Salin D, Cabuil V, Massart R: J. Coll. Int. Sci.. 1988, 132: 43. 10.1016/0021-9797(89)90214-2View Article
            3. Fannin PC, Scaife BKP, Charles SW: J. Phys. D: Appl. Phys.. 1990, 23: 1711. COI number [1:CAS:528:DyaK3MXhtFelsrw%3D] 10.1088/0022-3727/23/12/034View Article
            4. Viota JL, Rasa M, Sacanna S, Philipse AP: J. Coll. Int. Sci.. 2005, 290: 419. COI number [1:CAS:528:DC%2BD2MXpvVWhsbk%3D] 10.1016/j.jcis.2005.04.064View Article
            5. Rosensweig RE: Ferrohydrodynamics. Cambridge University Press, Cambridge; 1985:57–59.
            6. Carlos Rinaldi, Arlex Chaves, Shihab Elborai, Xiaowei (Tony) He, Markus Zahn, Curr. Opi. Coll. Int, Sci. 10, 141 (2005)
            7. Blums E, Cebers A, Maiorov MM: Magnetic Fluids. Walter de Gruyter, Berlin; 1997.
            8. Tsebers AO: Magnetohydrodynamics. 1982,18((2):137.
            9. Onsager L: J. Am. Chem. Soc.. 1936, 58: 1486. COI number [1:CAS:528:DyaA28Xlt1Gjuw%3D%3D] 10.1021/ja01299a050View Article
            10. Rosensweig RE: Ferrohydrodynamics. Cambridge University Press, Cambridge; 1985:63–67.
            11. Huang Wei, Wu Jianmin, Guo Wei, Li Rong, Cui Liya: J.Magn. Magn. Mater.. 2006, 307: 198. COI number [1:CAS:528:DC%2BD28XpvVOkurs%3D] 10.1016/j.jmmm.2006.03.067View Article
            12. Chantrell RW, Popplewell J, Charles SW: IEEE Trans. Magn.. 1978, 14: 975. 10.1109/TMAG.1978.1059918View Article
            13. Robbins M, White JG: J.Phys. Chem. Solids. 1964, 25: 77. 10.1016/0022-3697(64)90182-9View Article
            14. Lin D, Nunes AC, Majkrzak CF, Berkowitz AE: J.Magn. Magn. Mater.. 1995, 145: 343. COI number [1:CAS:528:DyaK2MXkvFKiu7k%3D] 10.1016/0304-8853(94)01627-5View Article
            15. Ladislau Vékás, Mircea Rasa, Doina Bica, J. Coll. Int. Sci. 231, 247 (2000)
            16. Huke B, Lücke M: Rep. Prog. Phys.. 2004, 67: 1736. COI number [1:CAS:528:DC%2BD2cXhtVensbnJ] 10.1088/0034-4885/67/10/R01View Article

            Copyright

            © to the authors 2007