Open Access

Effect of chemical composition on luminescence of thiol-stabilized CdTe nanocrystals

Nanoscale Research Letters20072:230

DOI: 10.1007/s11671-007-9052-x

Received: 10 January 2007

Accepted: 20 February 2007

Published: 13 April 2007


Judicious selection of the amount of surfactant during synthesis enables a drastic increase in the photoluminescence efficiency of aqueous CdTe nanocrystals (NCs) stabilized by thioglycolic acid (TGA). Elemental determination of the NCs was undertaken to identify the origin of this effect. The molar ratio of (Te + S) to Cd approached unity when the optimum amount of TGA was used during synthesis, whereas the number of S atoms originating from TGA molecules in one NC (2.6 nm of diameter) remained unchanged at 90 ± 3. This indicates that the core lattice composition at the beginning of synthesis, rather than the surface conditions, affects the photoluminescence efficiency of the NCs even after prolonged refluxing.


CdTe Nanocrystal Surfactant Thioglycolic acid Photoluminescence Efficiency Elemental determination




We are grateful to Dr. Frank Meyberg and Ms. Torborg Krugmann for the elemental analysis and Dr. Stephen Hickey for helpful discussion. We also thank Sandra Hirzberger and Alexey Shavel for assisting with the powder XRD measurements and chemical syntheses respectively. NM appreciates the financial support provided by German Academic Exchange Service and Japan Society for the Promotion of Science.

Authors’ Affiliations

Institute of Physical Chemistry, University of Hamburg
Photonics Department, National Institute of Advanced Industrial Science & Technology (AIST)
Physical Chemistry/Electrochemistry, Technical University of Dresden


  1. A.L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmu¨ler, H. Weller, B. Bunsen-Ges, Phys. Chem. 100, 1772 (1996)Google Scholar
  2. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG: J. Phys. Chem. B. 1997, 101: 9463. COI number [1:CAS:528:DyaK2sXmvVamtr0%3D] 10.1021/jp971091yView ArticleGoogle Scholar
  3. Li CL, Murase N: Chem. Lett.. 2005, 34: 92. COI number [1:CAS:528:DC%2BD2MXmtlCnsA%3D%3D] 10.1246/cl.2005.92View ArticleGoogle Scholar
  4. Guo J, Yang W, Wang C: J. Phys. Chem. B. 2005, 109: 17467. COI number [1:CAS:528:DC%2BD2MXptVCms7c%3D] 10.1021/jp044770zView ArticleGoogle Scholar
  5. Murase N, Gao MY: Mater. Lett.. 2004, 58: 3898. COI number [1:CAS:528:DC%2BD2cXptFOmsb8%3D] 10.1016/j.matlet.2004.03.055View ArticleGoogle Scholar
  6. Shavel A, Gaponik N, Eychmüller A: J. P. Chem. B. 2006, 110: 19280. COI number [1:CAS:528:DC%2BD28Xptleksb8%3D] 10.1021/jp063351uView ArticleGoogle Scholar
  7. Kasuya A, Sivamohan R, Barnakov YA, Dmitruk IM, Nirasawa T, Romanyuk VR, Kumar V, Mamykin SV, Tohji K, Jeyadevan B, Shinoda K, Kudo T, Terasaki O, Liu Z, Belosludov R V, Sundararajan V, Kawazoe Y: Nat. Mater.. 2004, 3: 99. ; COI number [1:CAS:528:DC%2BD2cXoslWqtg%3D%3D]; Bibcode number [2004NatMa...3...99K] 10.1038/nmat1056View ArticleGoogle Scholar
  8. Jose R, Zhanpeisov. NU, Fukumura H, Baba Y, Ishikawa M: J. Am. Chem. Soc.. 2005, 128: 629. COI number [1:CAS:528:DC%2BD2MXhtlant7zF] 10.1021/ja0565018View ArticleGoogle Scholar
  9. Talapin DV, Rogach AL, Haase M, Weller H: J. Phys Chem. B. 2001, 105: 12278. COI number [1:CAS:528:DC%2BD3MXot1yksr8%3D] 10.1021/jp012229mView ArticleGoogle Scholar
  10. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H: J. Am. Chem. Soc. 2002, 124: 5782. COI number [1:CAS:528:DC%2BD38XjtF2hurc%3D] 10.1021/ja0123599View ArticleGoogle Scholar
  11. H. Zhang, Z. Zhou, B. Yang, M. Gao, J. Phys. Chem. B 107, 8 (2003)View ArticleGoogle Scholar
  12. S.K. Poznyak, N.P. Osipovich, A. Shavel, D.V. Talapin, M. Gao, A. Eychmu¨ller, N. Gaponik, J. Phys. Chem. B 109, 1094 (2005)View ArticleGoogle Scholar
  13. Gong Y, Gao M, Wang D, Möhwald H: Chem. Mater.. 2005, 17: 2648. COI number [1:CAS:528:DC%2BD2MXjsFahs7o%3D] 10.1021/cm047932cView ArticleGoogle Scholar
  14. Dong C, Qian H, Fang N, Ren J: J. Phys. Chem. B. 2006, 110: 11069. COI number [1:CAS:528:DC%2BD28XkvVWhsLg%3D] 10.1021/jp060279rView ArticleGoogle Scholar
  15. Li CL, Ando M, Murase N: J. Non Cryst. Solids. 2004, 342: 32. COI number [1:CAS:528:DC%2BD2cXnsFSms74%3D] 10.1016/j.jnoncrysol.2004.06.019View ArticleGoogle Scholar
  16. Gaponik NP, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H: J. Phys. Chem. B. 2002, 106: 7177. COI number [1:CAS:528:DC%2BD38Xks1egsrg%3D] 10.1021/jp025541kView ArticleGoogle Scholar
  17. Rogach AL: Mater. Sci. Eng. B. 2000, 69: 435. 10.1016/S0921-5107(99)00231-7View ArticleGoogle Scholar
  18. Tang Z, Kotov NA, Giersig M: Science. 2002, 297: 237. ; COI number [1:CAS:528:DC%2BD38XlsVCns7g%3D]; Bibcode number [2002Sci...297..237T] 10.1126/science.1072086View ArticleGoogle Scholar
  19. Tang Z, Ozturk B, Wang Y, Kotov NA: J. Phys. Chem. B. 2004, 108: 6927. COI number [1:CAS:528:DC%2BD2cXjs1SjsbY%3D] 10.1021/jp049038eView ArticleGoogle Scholar
  20. Yu WW, Qu L, Guo W, Peng X: Chem. Mater.. 2003, 15: 2854. COI number [1:CAS:528:DC%2BD3sXks12msrw%3D] 10.1021/cm034081kView ArticleGoogle Scholar
  21. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H: J. Phys. Chem.. 2001, 105: 2260. View ArticleGoogle Scholar
  22. Nakashima T, Kawai T: Chem. Commun. 2005, 12: 1643. COI number [1:CAS:528:DC%2BD2MXjsVaqsLY%3D] 10.1039/b418001aView ArticleGoogle Scholar
  23. The 15% value is evaluated from the fact, that the average C/S ratio in NCs revealed by the elemental analysis is about 1.7 (Table 1) and not 2 as expected for the undecomposed TGA


© to the authors 2007