Open Access

Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

  • Subhadeep Mukhopadhyay1,
  • Susanta S Roy1Email author,
  • Raechelle A D'Sa1,
  • Ashish Mathur1,
  • Richard J Holmes1 and
  • James A McLaughlin1Email author
Nanoscale Research Letters20116:411

DOI: 10.1186/1556-276X-6-411

Received: 30 October 2010

Accepted: 3 June 2011

Published: 3 June 2011


Polymethylmethacrylate (PMMA) microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC) film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization) through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.


In recent years, microfluidics has become an indispensable component of microelectromechanical systems (MEMS) technology [13], with polymer devices establishing a greater role in the development of disposable microfluidic systems [4]. One such polymer is polymethylmethacrylate (PMMA) which is used in the fabrication of a wide variety of microfluidic devices [4, 5], from micro-reactors [4] to high aspect ratio microstructures [6], blood filters [7], and waveguide devices [8]. Additionally, PMMA microfluidic systems may be fabricated using a wide range of techniques, including injection molding, hot embossing, laser photo-ablation, and X-ray lithography [3, 4, 6, 7, 9].

Passive capillary flow is an important consideration for disposable polymeric microfluidic devices [2, 1012], where flow can be modified by adjusting the surface wettability or by incorporating surface roughness features on the interior surface of the microchannels. In literature, mainly three surface engineering strategies have been developed that can directly change nanoscale surface properties of polymer. First, fabricating desired surface features by various micro fabrication techniques, such as lithographic, hot-embossing, etc. Secondly, vacuum-based thin film coating techniques can be used to modify surface properties. Finally, polymer surface can be modified by physical (such as plasma) and chemical routes. Recent reports have shown that the surface wettability for polymer devices can be varied by plasma treatment [1316] and the coating of diamond-like carbon (DLC) film [17, 18] on the microchannel surfaces with numerous simulations describing the effects of surface roughness on microfluidic flow [2, 1922]. The plasma treatment and DLC coating on polymer for the surface modification have been well studied by other researchers. Chemical modification technique is also useful on PMMA surface for microfluidic applications [23]. Also, pristine and UV-modified PMMA surfaces were used in microfluidic devices for cell transport applications [24]. However, to the best of our knowledge, the effect of these surface modifications on microfluidic flow is not well understood. As such this study on the effects of microfluidic flow is essential to aid the design and fabrication processes of polymer microfluidic systems.

In this study, we have fabricated PMMA microchannels incorporating a micropillar array structure and subjected the channel surfaces to both plasma modification and DLC coatings to study the effects of surface modification on surface energy and surface chemistries. The capillary flow (in terms of capillary meniscus position and filling time of the devices) was recorded as a series of video files, which were subsequently analyzed to correlate the flow behavior of the surface modification system.

Experimental techniques

Fabrication of PMMA microchannels

An SU8 stamp-on-silicon-wafer was fabricated using an SF100 maskless photolithograph system (Intelligent Micro Patterning, LLC, USA) using an established SU8 processing method [5, 25, 26]. Briefly, SU8 50 was coated onto the silicon substrate using a spin coater at 1000 RPM to make the SU8 stamp, patterned following a soft bake by exposure to UV light at an intensity of 310 μW/cm2 for 25 s, and developed following post-exposure bake in EC solvent for 10 min, following which the stamp was hard baked. The PMMA channels were fabricated from the stamp using a hot embossing system (EVG520, EVG Group, Austria) [57, 9] operating at 125°C and 10 kN for 2 min. Finally, a direct bonding technique was used [5, 27] to seal the PMMA devices to a PMMA lid. The bonding temperature and pressure used were 90°C and 10 kN, respectively, for bonding time of 4 min.

Figure 1 represents the schematic of the microchannels used to study the effects of different surface properties (surface wettability and surface roughness) on flow through microfluidic channels, with amaranth dye (Sigma Aldrich, UK) used to aid visualization of the water meniscus. The microchannel dimensions following hot embossing were verified using a Dektak 8 profilometer (Vecco Instruments, Santa Barbara, CA, USA). The microchannel design [2, 11] shown in Figure 1 can be described as follows Regions 1 and 6 are circular inlets and outlets with a diameter of 2 mm. Region 2 has uniform width of 1.5 mm, while the width of region 3 increases from 1.5 to 5.0 mm. Region 4 (the chamber) has the length of 6 mm and width of 5 mm, and region 5 decreases from 5 to 1.5 mm in width. Each of the regions 2, 3, and 5 has a length of 2 mm along the channel axis and the height of the microchannel across all regions is 33 μm.
Figure 1

Schematic (top view) of the microfluidic device, with proper length of each region.

The PMMA microchannels described above were fabricated in two categories: (i) planar faces with no micro-pillar structures present on any of the walls of the device, (ii) planar faces on all but the lower wall, where micro-pillar features were hot-embossed. The micro-pillars were used as surface roughness elements [2, 22] with a height of 15 μm, and were fabricated from the beginning of region 3 and to the end of region 5, as arrays of 100 m (1.6% increase per mm2), 200 m (1.9% increase per mm2), or 300 m pillars (1.8% increase per mm2), with an inter-pillar separation (horizontal distance between any two subsequent micropillars) of 200 μm. Figure 2 shows example of SEM images of microchannel containing pillars of 300 μm in width.
Figure 2

SEM images of a microfluidic channel with 300 μm pillars. (a) Closure image of 300 μm pillars; (b) arrays of 300 μm pillars; (c) 300 μm pillars in the regions just after the inlet; and (d) 300 μm pillars in the region just before the outlet.

Surface modifications on the PMMA microchannel surfaces

We utilized four different methods to modify the pristine PMMA surfaces following heat and pressure treatment by hot embossing, but prior to thermal bonding, to modify the surface properties and wettability of the devices. The methods can be described briefly as follows:

Air dielectric barrier discharge (DBD) processing

Pristine PMMA surfaces were modified using an air DBD [1316] treatment, adjusting the lift length to 740 mm with a 20% ramp over five cycles. After the plasma treatment on the PMMA surface, the sample was stored in air for 48 h and the static water contact angle was measured as 58.1. After 5 days of that plasma treatment, the contact angle on the same plasma-treated surface was subsequently measured as 44.3.

Nitrogen plasma treatment

Pristine PMMA surfaces were treated using an N2 plasma in a Plasma Enhanced Chemical Vapor Deposition (PECVD) system [18]. The vacuum pressure in PECVD chamber was maintained as 5.2 × 10-6 Torr, and the sample was cleaned with Ar at 60 sccm with a working pressure of 1.5 × 10-2 Torr. The treatment time was 5 min for the gas mixture of Ar (5 sccm) and N2 (10 sccm) and the working pressure during deposition was maintained at 3.0 × 10-3 Torr.

Coating of hydrogenated amorphous carbon (a-C:H)

Pristine PMMA surfaces were coated with hydrogenated amorphous carbon (a-C:H) using a PECVD system [17]. The vacuum pressure in PECVD chamber was maintained as 4.6 × 10-6 Torr, and the sample was cleaned with Ar at 60 sccm with a working pressure of 1.6 × 10-2 Torr. The deposition time was 5 min for the gas mixture of Ar (10 sccm) and C2H2 (20 sccm) with a working pressure of 7.7 × 10-3 Torr.

Coating of Si-doped hydrogenated amorphous carbon (a-C:H)

Pristine PMMA surfaces were coated with Si-doped a-C:H using a PECVD system [17]. The vacuum pressure in PECVD chamber was maintained as 6.2 × 10-6 Torr, and the sample was cleaned with Ar at 60 sccm at a working pressure of 1.8 × 10-2 Torr. The deposition time was 5 min for the gas mixture of Ar (5 sccm), C2H2 (10 sccm) and TMS (5 sccm) in 8.9 × 10-3 Torr chamber pressure.

Characterization techniques

Surface characterizations

The surface of PMMA was not rinsed with IPA and DI water prior to contact angle analysis. However, rinsing PMMA surfaces by IPA and DI water may alter contact angles [28]. Two different liquids were used to carry out the contact angle measurements: ultra-pure water (MilliQ®) and Ethylene Glycol (Sigma-Aldrich, Gillingham, UK). Static contact angle were measured (using CAM 2000, KSV Instrument Ltd., Helsinki, Finland) by the sessile-drop method at room temperature (approximately 25°C). A 5 μl droplet of the liquid was deposited on the surface of the sample, and immediately after stabilization, an image of the droplet was captured. The profile of the droplet was automatically fitted with the CAM 2000 software using a Young Laplace approach. At least ten readings were performed per sample type and the corresponding average values and standard deviations were recorded. We have studied the surface chemistry and roughness of the unmodified and modified PMMA surfaces by X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM), respectively.

Fluidic measurements for the microfluidic devices

Fluid flow in the sealed devices was recorded using a CMOS camera capturing video at 25 frames per second (fps) which corresponded to a frame resolution of 0.04 s/frame. The air-water interface velocity was measured from the recorded video clips [29] and the air-water interface velocity and the filling time (time for the meniscus to travel from the inlet to outlet of any particular device) were calculated by measuring the interface position change over a corresponding time interval [2, 5]. The laboratory temperature and humidity at the time of recording were in the order of 25°C and 28%, respectively. The flow was visualized using amaranth dyed water, with 15 μl amount of working liquid volume dispensed to minimize the entrance effect in each system. The meniscus movements were measured along the center line of the chamber.

Results and discussion

Surface energy, surface chemistry, and surface roughness

The static contact angles of dyed water and ethylene glycol on pristine PMMA and modified flat surfaces is shown in Table 1 with the static contact angles of ethylene glycol used to calculate the surface energies. As such, two groupings of static contact angles of water have been observed (Table 1):
Table 1

Static contact angles of dyed water and ethylene glycol on different surfaces

Surface types

Static contact angles (°)


Dyed water

Ethylene glycol

Air DBD processed PMMA



Nitrogen plasma-treated PMMA



Undoped DLC-coated PMMA



Control PMMA



Si-doped DLC-coated PMMA



  1. (i)

    72.6 for hydrogenated amorphous carbon (a-C:H) coated surface, 79.9 for pristine PMMA surface and 81.2 for Si-doped a-C: H coated surface;

  2. (ii)

    44.3 for air DBD processed PMMA surface and 52.1 for Nitrogen plasma-treated PMMA surface.


The plasma treatment processes were shown to significantly reduce static contact angle from 79.9 to between 52.1 and 44.3, data that supports results presented in previous reports on DLC [30] and plasma-treated PMMA [31] surfaces. Additionally, in the literature, surface wettability (hydrophobicity or hydrophilicity) has been defined using the static water contact angle [29, 3235] method, and as such the plasma treatment process has been shown to considerably increased surface wettability-a feature which could be used to modify microfluidic flow in PMMA microchannels. The thickness of both undoped and Si-doped DLC coatings was measured as 70 nm by surface stylus profilometer.

Static contact angles for water and ethylene glycol were used to evaluate the dispersive and polar components of surface energy using the following relationship [36]:
where θ is the contact angle of the liquid on the solid surface; γsd and γsp are the dispersion and polar components of surface free energy of the solid surface, respectively; γlis the surface free energy of the liquid; γld and γlp are the dispersion and polar components of surface free energy of the liquid surface, respectively. The calculated surface energies as a function of static water contact angle are shown in Figure 3, where in general, the static water contact angle decreases as the polar component of surface free energy (solid surface) increases [3740]. Figure 3 also illustrates that the surface energy for both PMMA and DLC-coated PMMA were similar; however, Si-doped DLC demonstrated an increased surface energy when compared to pristine PMMA.
Figure 3

Surface energy versus static water contact angle.

The atomic percentage of chemical species and change to the chemical bonding configurations were probed by X-ray photoelectron spectroscopy (XPS). The corresponding C1s and O1s spectra for pristine, DBD modified, and a-C:H-coated PMMA surfaces are given in Figure 4a,b, respectively. For all the samples studied, the C1s envelope is curve fitted into three components [4143] at binding energies of 285.0 eV (C-C/C-H), 286.7 eV (C-O), and 289.0 eV (O = C-O). The O1s envelope can be fitted with three peaks at 532.2 eV (C = O), 533.7 eV (C-O/C-H), and 535.0 eV (H2O), respectively [41, 42]. The DBD treatment of PMMA clearly shows a loss of alkyl components (C-C/C-H) with a prominent increase in the oxidative groups and generates more hydroxyl components (Figure 4). In general, the DBD atmospheric pressure plasma treatment method generates radicals which, in the absence of other reactants, combine with oxygen from the environment to create oxidative functionalities such as peroxides and hydroperoxides on the polymer surface. The reactive oxygen groups slowly decompose to form more stable oxidative groups such as hydroxyls. A detailed explanation of the oxidation of PMMA observed by XPS analysis after DBD modification has been previously reported by us [44]. In the case of DLC-coated samples, they had less oxygen and hydrocarbon groups. The changes in surface topography due to the surface modifications were probed using an atomic force microscope (AFM). The AFM results suggested that the air DBD process increased surface roughness of pristine PMMA. Both the average and the RMS roughness values increased from 0.71 and 0.90 nm to 2.40 and 3.40 nm, respectively, as shown in Figure 5. It is reported that for surfaces with contact angle less than 90°, the increase of surface roughness reduces the static water contact angle [45]. We have observed that the static water contact angle was much less on the air DBD-treated PMMA than that on the pristine PMMA surface. This type of surface engineering is quite useful in tuning the wettability of the polymer surfaces.
Figure 4

Curve fitted XPS spectra for three surfaces. (a) C 1s (b) O1s.
Figure 5

AFM images and line profiles for (a) pristine PMMA surface; (b) DBD treated PMMA surface.

Theoretical background of capillary flow in rectangular microchannel

In a recent report, Waghmare and Mitra[46, 47] derived the pressure field distribution in the capillary meniscus at the entrance of a rectangular microchannel considering semi-cylindrical control volume. In another recent report, Waghmare and Mitra[46, 47] investigated the numerical solutions of flow front penetration in vertically oriented rectangular microfluidic channels considering finite reservoir at the inlet to study the effect of gravity along with capillarity. In our experimental study, the control volume was not semi-cylindrical. Also, the capillary flow was not significantly gravity assisted as the microchannel was not vertically oriented. Therefore, we used a simplified model to compare the experimental results of capillary meniscus movements with analytical solutions [48]. Interface between solid-liquid-gas has special effect on the speed of the fluidic flow in micro dimension. The instantaneous position (penetration depth) of the capillary meniscus can be derived from incompressible Navier-Stokes equation using the continuity equation and momentum equation [48]:
where D is the diffusion coefficient and Lo = L(0).

where ρ, G, H, h, and μ are density, gravitational acceleration, height of the liquid reservoir at the inlet, microchannel height, and viscosity of liquid, respectively. The surface tension term (γsa - γsl) can be calculated from Equation 3. γsa is the surface tension of the solid-air interface and γsl is the surface tension of the solid-liquid interface. In this study, 1st term in right-hand side of Equation 3 has been neglected as H ~ 0 for surface driven flow.

Moreover, capillary pressure (ΔPcap) at the solid-liquid-gas interface can be given by the following equation [12, 49]:

where, γlg is the water-air surface tension per unit area. θ2 is the water-top wall contact angle and θ1 is the contact angle of water on any other wall of the microchannel. The water meniscus will propagate in microchannel by capillary action if ΔP has positive value [12], and in our experiments, we have observed that the air-water meniscus movement was slower in the microchannel of higher contact angle, indicating that θ1 (surface wettability reduced) was increased while maintaining w, h, and θ2. For higher contact angles fluid flow is significantly slower than for low contact angles, a conclusion supported by Equation 4.

Effect of surface wettability on microfluidic flow of dyed water

The air-water interface position and the filling time (time required for the meniscus to travel from the inlet to outlet of the device) were determined from the video files captured using the CMOS camera. A representative sequence of frames following the meniscus movement of dyed water on the air DBD processed microchannel surface containing 300 μm pillar is shown in Figure 6. While, Figure 7 presents the meniscus position-time graphs for the device containing no pillars on the channel wall and Figure 8 presents the data for the device containing 100 μm pillars on the bottom of the microchannel. The variation in filling time as a function of contact angle is shown in Figure 9, and the following observations can be made from the data presented in Figure 7 to Figure 9:
Figure 6

Snap shot images of capillary filling of air DBD processed microchannel containing 300 μm pillar. (a) After 2 s, (b) After 4 s, (c) After 8 s, (d) After 11 s.
Figure 7

Experimental and analytical meniscus position-time plots for pristine PMMA and modified flat surfaces.
Figure 8

Experimental and analytical meniscus position-time plots for pristine PMMA and modified pillars surfaces.
Figure 9

Variation of filling time with static water contact angle.

  1. (i)

    The filling time is higher for the microchannel surfaces with higher static water contact angle for any category of devices;

  2. (ii)

    In Figures 7 and 8, the meniscus movement was faster for plasma-treated surfaces at all positions in the microchannels than on the pristine and DLC-coated PMMA surfaces. A similar trend of meniscus movement was shown the variation in pillar dimensions;

  3. (iii)

    The linear relationship was shown between pillar dimension (none, 100, 200, 300 m) and flow velocity in the microchamber;

  4. (iv)

    The effect of pillar side length was more pronounced on the surfaces of higher static water contact angle.


We also compared our experimental results with analytical simulation using Equation 2. Excellent fitting were obtained for all data. We have determined the values of diffusion coefficient for each microfluidic flow on different categories of surfaces (Figure 1). The diffusion coefficient was higher for the microfluidic flow on the surface of lower static contact angle (Table 2). We have evaluated the surface tension term (γsa - γsl) from Equation 3 from the results of analytical simulation. Surface tension term (γsa - γsl) was directly proportional to diffusion coefficient (D). The surface tension term was higher for the plasma-treated surfaces than other surfaces (Table 2). Yang et al. [48] has also shown that the surface tension term was higher for the surface of lower contact angle.

The variation of static water contact angle in the microchannel structure has been shown to have a significant influence on the speed of microfluidic flow, indeed Sultana et al. [50] demonstrated the dependence of microfluidic flow on surface wettability, and observed that the flow rate decreased with the decrease of surface wettability [50] between static contact angles of 20 and 89°. As lower static water contact angle is a measurement of higher surface wettability [30, 33, 35, 36], so the meniscus movement was faster on the microchannel surface of with lower static contact angle [30]. Especially, when Suk and Cho [12] observed, the meniscus movement became significantly slower when the hydrophobic patterns were created in polymeric microchannel.

In this paragraph, we attempted to correlate fluid flow characteristic with surface properties and device structures. The lower filling time on plasma-treated surfaces was due to the higher polar surface energy due to plasma treatment (Figure 3). The surface chemistry studies revealed higher oxygen content and hydroxyl species on DBD processed PMMA surfaces (Figure 4b) and that may be one of the reasons of higher speed of fluid flow than on pristine PMMA surface. The higher surface roughness on DBD processed PMMA (Figure 5) may be another reason of higher speed of water flow than that on pristine PMMA surface [45]. The geometry of the microchannel can also play a significant effect on microfluidic flow. We have modified the speed of microfluidic flow by varying the surface wettability and designed surface roughness on the bottom wall of microchannel, and Saha et al. [11] theoretically predicted that the channel walls and pillars would have significant effects on fluid flow, with the contributions being 1-3% for the side walls, 5-13% for the pillars and 85-89% from the top and bottom walls. In our study, we modified the bottom and side wall surfaces to change the surface wettability (measured as static contact angle on the surface), however the surface wettability on the top wall was constant for each device. Since the surface area to volume ratio is very high in microchannels, the surface wettability has a significant effect on microfluidic flow, and as a result a small change of contact angle leads to a larger change in capillary forces, thus making a significant change in filling time (Figure 9).

Effect of micropillar side length on the microfluidic flow of dyed water

In a pressure-driven flow system, Wang et al. [22] demonstrated that the Poiseuille number increased with increasing size of the roughness elements, while the mass flow rate can be seen to decrease with the increasing Poiseuille number [51]. So, the mass flow rate was lower with increasing size of surface roughness elements. In our experimental study on capillary flow, PMMA micropillars were used to enhance surface roughness of the system. Pillar height and spacing were constant but the side length was varied to study the effect of micropillar dimension on microfluidic flow. Figure 9 illustrates that the filling time of the capillary meniscus was higher in the microfluidic device integrated with micropillars of higher side length. So, the speed of the capillary meniscus was lower in the device integrated with higher side length micropillars.

Rawool et al. [52] observed that the microfluidic flow was slower in microchannel containing obstructions of larger height on the channel wall due to enhancement of the friction factor, which corroborates our observations that the microfluidic flow of dyed water was slower for the larger side lengths of PMMA pillars, with the change in surface area resulting from the micropillars being 1.6-1.9%. As the surface area to volume ratio increases the average meniscus velocity can be seen to decreases for surface-driven flow in microchannels [11]. Saha et al. [11] used computer simulations to predict that the effect of pillars on speed and filling time would be significantly higher for higher of contact angles. This is supported by our work, where we have observed a similar behavior (Figure 9). In other words, the pillars have highly significant effects on dyed water flow on the surfaces of higher static contact angles but less significant effects for lower static contact angles. The diffusion coefficient was higher for the microfluidic flow through the microchannel containing micropillars of smaller side length for each of the pristine and modified surfaces (Table 2). Also, the surface tension term (γsa - γsl) was higher for the microchannel surface containing micropillars of smaller side length for each of the pristine and modified surfaces (Table 2).
Table 2

Values of diffusion coefficients and surface tension parameters from analytical simulation on each position-time curve of all the microfluidic flow

Surface modification

Surface structure

Diffusion coefficient, D(ρm2 s-1)

γsa - γsl


Air DBD processed

Flat surface




100 μm pillar




200 μm pillar




300 μm pillar



Nitrogen plasma treated

Flat surface




100 μm pillar




200 μm pillar




300 μm pillar



Control PMMA

Flat surface




100 μm pillar




200 μm pillar




300 μm pillar



Undoped DLC coated

Flat surface




100 μm pillar




200 μm pillar




300 μm pillar



Si-doped DLC coated

Flat surface




100 μm pillar




200 μm pillar




300 μm pillar




In this study, we have shown that the microfluidic flow behavior can be significantly varied by two simple ways; first, by the plasma treatment on PMMA microchannel; secondly, by the variation of designed surface roughness (micropillars). Comprehensive analysis of surface energy and surface chemistry studies revealed the reasons for the change of fluid flow behavior in microchannel. The static water contact angle on PMMA surfaces being reduced significantly by a plasma treatment processes. The polar surface energy was shown to be higher for the surfaces of lower static water contact angle and the oxygen content, hydro-carbon groups, and surface roughness were notably higher on DBD processed PMMA than for pristine PMMA. The pristine and modified surfaces can be classified into two different groupings of wettabilities, determined by static water contact angles, above 70 and near to 50°. The dyed water flow was faster on the surface of lower static contact angle due to higher wettability, and the effect of pillar side length shown to be more significant on the surface of higher static water contact angle. This type of surface engineering of any polymeric material can be widely used in variety of applications such as microfluidic and bio-engineering.



atomic force microscope


diamond-like carbon


frames per second


microelectromechanical systems


plasma enhanced chemical vapor deposition




X-ray photo electron spectroscopy.


Authors’ Affiliations

Nanotechnology and Integrated Bio-Engineering Center, School of Engineering, University of Ulster


  1. Luo JK, Fu YQ, Le HR, Williams JA, Spearing SM, Milne WI: Diamond and diamond-like carbon MEMS. J Micromech Microeng 2007, 17: S147-S163. 10.1088/0960-1317/17/7/S12View Article
  2. Saha AA, Mitra SK: Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow. J Colloid Interface Sci 2009, 339: 461–480. 10.1016/j.jcis.2009.07.071View Article
  3. Verpoorte E, Rooij NFD: Microfluidics Meets MEMS. Proc IEEE 2003, 91: 930–953. 10.1109/JPROC.2003.813570View Article
  4. Mathur A, Roy SS, Tweedie M, Mukhopadhyay S, Mitra SK, McLaughlin JA: Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Curr Appl Phys 2009, 9: 1199–1202. 10.1016/j.cap.2009.01.007View Article
  5. Mukhopadhyay S, Roy SS, Mathur A, Tweedie M, McLaughlin JA: Experimental study on capillary flow through polymer microchannel bends for microfluidic applications. J Micromech Microeng 2010, 20: 055018–1-055018–6.View Article
  6. Becker H, Heim U: Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens Actuators A 2000, 83: 130–135. 10.1016/S0924-4247(00)00296-XView Article
  7. Li JM, Liu C, Dai XD, Chen HH, Liang Y, Sun HL, Tian H, Ding XP: PMMA microfluidic devices with three-dimensional features for blood cell filtration. J Micromech Microeng 2008, 18: 095021–1-095021–7.
  8. Mathur A, Roy SS, McLaughlin JA: Transferring vertically aligned carbon nanotubes onto a polymeric substrate using a hot embossing technique for microfluidic applications. J R Soc Interface 2010, 7: 1129–1133. 10.1098/rsif.2009.0520View Article
  9. Datta P, Goettert J: Method for polymer hot embossing process development. Microsyst Technol 2007, 13: 265–270.View Article
  10. Ichikawa N, Hosokawa K, Maeda R: Interface motion of capillary-driven flow in rectangular microchannel. J Colloid Interface Sci 2004, 280: 155–164. 10.1016/j.jcis.2004.07.017View Article
  11. Saha AA, Mitra SK, Tweedie M, Roy S, McLaughlin JA: Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars. Microfluid Nanofluid 2009, 7: 451–465. 10.1007/s10404-008-0395-0View Article
  12. Suk JW, Cho JH: Capillary flow control using hydrophobic patterns. J Micromech Microeng 2007, 17: N11-N15. 10.1088/0960-1317/17/4/N01View Article
  13. Cui NY, Upadhyay DJ, Anderson CA, Brown NMD: Study of the surface modification of a Nylon-6,6 film processed in an atmospheric pressure air dielectric barrier discharge. Surf Coat Technol 2005, 192: 94–100. 10.1016/j.surfcoat.2004.03.006View Article
  14. Cui NY, Upadhyay DJ, Anderson CA, Meenan BJ, Brown NMD: Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement. Appl Surf Sci 2007, 253: 3865–3871. 10.1016/j.apsusc.2006.08.008View Article
  15. Liu CZ, Wu JQ, Ren LQ, Tong J, Li JQ, Cui N, Brown NMD, Meenan BJ: Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater Chem Phys 2004, 85: 340–346. 10.1016/j.matchemphys.2004.01.026View Article
  16. Upadhyay DJ, Cui NY, Meenan BJ, Brown NMD: The effect of dielectric barrier discharge configuration on the surface modification of aromatic polymers. J Phys D 2005, 38: 922–929. 10.1088/0022-3727/38/6/022View Article
  17. Abbas GA, McLaughlin JA, Harkin-Jones E: A study of ta-C, a-C:H and Si-a:C:H thin films on polymer substrates as a gas barrier. Diam Relat Mater 2004, 13: 1342–1345. 10.1016/j.diamond.2003.10.084View Article
  18. Cuong NK, Tahara M, Yamauchi N, Sone T: Diamond-like carbon films deposited on polymers by plasma-enhanced chemical vapor deposition. Surf Coat Technol 2003, 174–175: 1024–1028.View Article
  19. Croce G, Agaro PD: Numerical simulation of roughness effect on microchannel heat transfer and pressure drop in laminar flow. J Phys D 2005, 38: 1518–1530. 10.1088/0022-3727/38/10/005View Article
  20. Gamrat G, Favre-Marinet M, Person SL, Baviere R, Ayela F: An experimental study and modelling of roughness effects on laminar flow in microchannels. J Fluid Mech 2008, 594: 399–423.View Article
  21. Hay K, Dragila M: Physics of fluid spreading on rough surfaces. Int J Numer Anal Mod 2008, 5: 85–92.
  22. Wang XQ, Yap C, Mujumdar AS: Effects of two-dimensional roughness in flow in microchannels. J Electron Packag 2005, 127: 357–361. 10.1115/1.1997164View Article
  23. Soper SA, Henry AC, Vaidya B, Galloway M, Wabuyele M, McCarley RL: Surface modification of polymer-based microfluidic devices. Anal Chim Acta 2002, 470: 87–99. 10.1016/S0003-2670(02)00356-2View Article
  24. Witek MA, Wei S, Vaidya B, Adams AA, Zhu L, Stryjewski W, McCarley RL, Soper SA: Cell transport via electromigration in polymer-based microfluidic devices. Lab Chip 2004, 4: 464–472. 10.1039/b317093dView Article
  25. Carlier J, Arscott S, Thomy V, Fourrier JC, Caron F, Camart JC, Druon C, Tabourier P: Integrated microfluidics based on multi-layered SU-8 for mass spectrometry analysis. J Micromech Microeng 2004, 14: 619–624. 10.1088/0960-1317/14/4/024View Article
  26. Sameoto D, Tsang SH, Foulds IG, Lee SW, Parameswaran M: Control of the out-of-plane curvature in SU-8 compliant microstructures by exposure dose and baking times. J Micromech Microeng 2007, 17: 1093–1098. 10.1088/0960-1317/17/5/032View Article
  27. Tsao CW, DeVoe DL: Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 2009, 6: 1–16. 10.1007/s10404-008-0361-xView Article
  28. Wei S, Vaidya B, Patel AB, Soper SA, McCarley RL: Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. J Phys Chem B 2005, 109: 16988–16996. 10.1021/jp051550sView Article
  29. Lim YT, Kim SJ, Yang H, Kim K: Controlling the hydrophilicity of microchannels with bonding adhesives containing surfactants. J Micromech Microeng 2006, 16: N9-N16. 10.1088/0960-1317/16/7/N01View Article
  30. Okpalugo TIT, Ogwu AA, Maguire PD, McLaughlin JAD: Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials 2004, 25: 239–245. 10.1016/S0142-9612(03)00494-0View Article
  31. Brown L, Koerner T, Horton JH, Oleschuk RD: Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 2006, 6: 66–73. 10.1039/b512179eView Article
  32. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S: Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 2005, 14: 590–597.View Article
  33. Liu YC, Lu DN: Surface energy and wettability of plasma-treated polyacrylonitrile fibres. Plasma Chem Plasma Process 2006, 26: 119–126. 10.1007/s11090-006-9005-7View Article
  34. Xu LC, Siedlecki CA: Effects of surface wettability and contact time on protein adhesion to biomaterial surafces. Biomaterials 2007, 28: 3273–3283. 10.1016/j.biomaterials.2007.03.032View Article
  35. Yang C, Leong KC: Influences of substrate wettability and liquid viscosity on isothermal spreading of liquid droplets on solid surfaces. Exp Fluids 2002, 33: 728–731.View Article
  36. Goebel MO, Bachmann J, Woche SK, Fischer WR, Horton R: Water potential and aggregate size effects on contact angle and surface energy. Soil Sci Soc Am J 2004, 68: 383–393. 10.2136/sssaj2004.0383View Article
  37. Janssen D, Palma RD, Verlaak S, Heremans P, Dehaen W: Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films 2006, 515: 1433–1438. 10.1016/j.tsf.2006.04.006View Article
  38. Kwok SCH, Wang J, Chu PK: Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diam Relat Mater 2005, 14: 78–85. 10.1016/j.diamond.2004.07.019View Article
  39. Suzer S, Argun A, Vatansever O, Aral O: XPS and water contact angle measurements on aged and corona-treated PP. J Appl Polym Sci 1999, 74: 1846–1850. 10.1002/(SICI)1097-4628(19991114)74:7<1846::AID-APP29>3.0.CO;2-BView Article
  40. Zan HW, Chou CW, Wang CH, Yen KH, Hwang JC: Pentacene patterning on Aluminum Nitride by water dipping. J Electrochemical Soc 2008, 155: J321-J325. 10.1149/1.2976894View Article
  41. Desimoni E, Casella GI, Salvi AM: XPS/XAES study of carbon fibres during thermal annealing under UHV conditions. Carbon 1992, 30: 521–526. 10.1016/0008-6223(92)90170-2View Article
  42. Hozumi A, Masuda T, Hayashi K, Sugimura H, Takai O, Kameyama T: Spatially defined surface modification of poly(methylmethacrylate) using 172 nm vacuum ultraviolet light. Langmuir 2002, 18: 9022–9027. 10.1021/la020478bView Article
  43. Pfleging W, Adamietz R, Bruckner HJ, Bruns M, Welle A: Laser-assisted modification of polymers for microfluidic, microoptics and cell culture applications. In Laser-based Micro- and Nanopackaging and Assembly: Proceedings of Photonics West: Lasers and Applications in Science and Technology, San Jose, Calif., January 20–25, 2007. Bellingham, WA.: SPIE; 2007. S.645907 (SPIE Proceedings Series; 6459) S.645907 (SPIE Proceedings Series; 6459)
  44. D'Sa RA, Burke GA, Meenan BJ: Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces. Acta Biomater 2010, 6: 2609–2620. 10.1016/j.actbio.2010.01.015View Article
  45. Packham DE: Surface energy, surface topography and adhesion. Int J Adhesion Adhesives 2003, 23: 437–448. 10.1016/S0143-7496(03)00068-XView Article
  46. Waghmare PR, Mitra SK: On the derivation of pressure field distribution at the entrance of a rectangular capillary. J Fluids Eng 2010, 132: 054502–1-054502–4.View Article
  47. Waghmare PR, Mitra SK: Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels. J Colloid Interface Sci 2010, 351: 561–569. 10.1016/j.jcis.2010.08.039View Article
  48. Yang LJ, Yao TJ, Tai YC: The marching velocity of the capillary meniscus in a microchannel. J Micromech Microeng 2004, 14: 220–225. 10.1088/0960-1317/14/2/008View Article
  49. Blanco-Gomez G, Glidle A, Flendrig LM, Cooper JM: Integration of low-power microfluidic pumps with biosensors within a laboratory-on-a-chip device. Anal Chem 2009, 81: 1365–1370. 10.1021/ac802006dView Article
  50. Sultana S, Matsui J, Mitsuishi M, Miyashita T: Flow behavior in surface-modified microchannels with polymer nanosheets. Thin Solid Films 2009, 518: 606–609. 10.1016/j.tsf.2009.07.048View Article
  51. Park SJ, Chung S, Bang HW, Chung C, Han DC, Chang JK: 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, May 2–4, 2002. Madison, Wisconsin, USA; 2002:565.
  52. Rawool AS, Mitra SK, Kandlikar SG: Numerical simulation of flow through microchannels with designed roughness. Microfluid Nanofluid 2006, 2: 215–221. 10.1007/s10404-005-0064-5View Article


© Mukhopadhyay et al; licensee Springer. 2011

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.