Open Access

Nanoscale potassium niobate crystal structure and phase transition

Nanoscale Research Letters20116:530

DOI: 10.1186/1556-276X-6-530

Received: 1 June 2011

Accepted: 23 September 2011

Published: 23 September 2011


Nanoscale potassium niobate (KNbO3) powders of orthorhombic structure were synthesized using the sol-gel method. The heat-treatment temperature of the gels had a pronounced effect on KNbO3 particle size and morphology. Field emission scanning electron microscopy and transmission electron microscopy were used to determine particle size and morphology. The average KNbO3 grain size was estimated to be less than 100 nm, and transmission electron microscopy images indicated that KNbO3 particles had a brick-like morphology. Synchrotron X-ray diffraction was used to identify the room-temperature structures using Rietveld refinement. The ferroelectric orthorhombic phase was retained even for particles smaller than 50 nm. The orthorhombic to tetragonal and tetragonal to cubic phase transitions of nanocrystalline KNbO3 were investigated using temperature-dependent powder X-ray diffraction. Differential scanning calorimetry was used to examine the temperature dependence of KNbO3 phase transition. The Curie temperature and phase transition were independent of particle size, and Rietveld analyses showed increasing distortions with decreasing particle size.


potassium niobate crystal structure phase transition nanoscale powder.


Lead oxide-based perovskites are a commonly used piezoelectric material and are now widely used in transducers and other electromechanical devices [14]. However, the high toxicity and high processing vapor pressure of lead oxide cause serious environmental problems. A promising way to address this issue is to develop lead-free piezoelectric ceramics to minimize lead pollution. Recently, as demand has increased, many studies have focused on the development of high-quality lead-free piezoelectric materials [57].

Potassium niobate (KNbO3) is a ferroelectric compound with a perovskite-type structure and is a promising piezoelectric material owing to superior coupling in its single crystal form [8, 9]. KNbO3 materials have attracted considerable attention for applications in lead-free piezoelectric materials. KNbO3 has an orthorhombic structure and is a well-known ferroelectric material with extensive applications in electromechanical, nonlinear optical, and other technological fields [1013].

KNbO3 phase transition temperatures have already been determined. KNbO3 can exist in orthorhombic, tetragonal, and cubic phases above room temperature, and at ambient pressure, it exhibits two structural transitions with decreasing temperature: cubic to tetragonal at 691 K and tetragonal to orthorhombic at 498 K [14]. The cubic phase is paraelectric while the remaining two are ferroelectric; however, phase transitions of nanoscale KNbO3 have not yet been reported in detail.

The phase transition temperatures of ferroelectric ceramics are size dependent, with the ferroelectric phase becoming unstable at room temperature when the particle diameter decreases below a critical size [1517]. However, this critical size usually encompasses a broad size range. Experimental discrepancies may arise because of intrinsic differences between ferroelectric samples, and several theoretical models based on Landau theory overestimate the critical sizes [18]. Therefore, the phase structure of nanoscale KNbO3 at room temperature requires further investigations.

The current work is a systematic study of the crystal structure and phase transitions of nanoscale KNbO3, synthesized using the sol-gel method. The aim was to investigate the size dependence of the ferroelectric phase and the phase transition temperatures of nanoscale KNbO3 powders.

Results and discussion

Typical field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images of KNbO3 powders obtained from heat-treating gels at 600°C, 700°C, and 800°C are shown in Figure 1. Particle sizes were found to be much smaller than those produced by conventional mixed-oxide processing. The 600°C sample in Figure 1a showed that most primary particles were < 50 nm in size, but many of these had clustered into agglomerates. Raising the temperature to 700°C resulted in particle sizes increasing to approximately 70 nm, as shown in Figure 1b. Particles of up to approximately 80 nm in size were present in the 800°C sample shown in Figure 1c. Figure 1d, e, f shows TEM images of nanoscale KNbO3 particles in a brick-like morphology. Increasing heat-treatment temperature led to an increase in particle size, which was accompanied by an incremental increase in the brick-like morphology. The average grain size of aggregated KNbO3 powders was estimated to be < 100 nm. Table 1 shows average particle sizes obtained at different temperatures estimated from FESEM and TEM images, and the given error was ± 1 standard deviation.
Figure 1

FESEM images of nanoscale KNO 3 powders obtained by heat-treating gels. At (a) 600°C, (b) 700°C, and (c) 800°C. (d, e, f) TEM images of a nanocrystallite from (a), (b), and (c), respectively.

Table 1

Particle size dependence on gel heat-treatment temperature

Heat-treatment temperature (°C)




Particle size (nm)

40 ± 10

70 ± 15

80 ± 15

Rietveld refinement results of synchrotron X-ray diffraction (XRD) data for KNO3 powders obtained by heat-treating gels at 600°C, 700°C, and 800°C are given in Table 2, and the corresponding XRD patterns are shown in Figure 2. Each powder crystallized in a perovskite phase with an orthorhombic structure (space group Amm2) at room temperature. Orthorhombic KNbO3 is thermodynamically stable at room temperature, and orthorhombic KNbO3 crystals have potential in applications as ferroelectric and nonlinear optical materials. The ferroelectric orthorhombic phase was retained even for particles smaller than 50 nm.
Table 2

Rietveld refinement results of synchrotron XRD data collected at λ = 1.2348 Å

Heat-treatment temperature (°C)




Crystal structure




Space group




Unit cell dimensions


a (Å)




b (Å)




c (Å)




Atomic coordinates












K (2b)




Nb (2a)




R wp of all samples was < 10%.
Figure 2

Synchrotron XRD patterns of nanoscale KNO 3 powders obtained by heat-treating gels at the stated temperature. λ = 1.2348 Å.

A cell volume plot is shown in Figure 3, and cell volume increased with decreasing particle size. An increase in unit cell volume has been reported for many metal oxides and ferroelectric materials [1922]. The most consistent explanation for this in small oxide particles is the effect of the truncated attractive Madelung potential that holds the oxide lattice together [23]. The Rietveld analysis showed increasing distortions with decreasing particle size.
Figure 3

Rietveld refinement of synchrotron data. For nanoscale KNO3 powders showing cell (a) parameters and (b) volume.

Figure 4 shows temperature-dependent XRD patterns of nanoscale KNO3 powders obtained by heat-treating gels at different temperatures. Three structural types were distinguished by the diffraction at 44° to 46° 2 θ. The clearly split peaks were indexed to the 022 and 200 planes for the orthorhombic phase. Broad diffractions of reversed intensity to those of orthorhombic diffractions were considered to correspond to 002 and 020 tetragonal diffractions, since a reversed intensity was observed for the corresponding peaks of the high-temperature tetragonal phase above approximately 220°C. The single peak of the 200 plane was identified as that of the cubic phase above approximately 430°C.
Figure 4

XRD patterns showing phase transition of nanoscale KNO 3 powders. Obtained upon heat-treating gels at different temperatures: (a) orthorhombic to tetragonal (600°C), (b) tetragonal to cubic (600°C), (c) orthorhombic to tetragonal (700°C), (d) tetragonal to cubic (700°C), (e) orthorhombic to tetragonal (800°C), and (f) tetragonal to cubic (800°C).

Figure 4 shows that there was no obvious difference in transition temperature between the three samples. Temperature-dependent XRD showed that the actual transition temperature was nearly unchanged, and that the Curie temperature (T C) and phase transition were independent of particle size.

To further investigate the phase transition of nanoscale KNbO3, the differential scanning calorimetry (DSC) analyses were undertaken and the results are shown in Figure 5. Table 3 shows transition temperatures observed from DSC, for the three nanoscale KNbO3 samples of different particle sizes. The lower temperature corresponded to the phase change from orthorhombic to tetragonal, and the higher temperature was that from tetragonal to cubic. DSC results showed that phase transition was independent of particle size.
Figure 5

DSC plots of nanoscale KNO 3 powders obtained by heat-treating gels. At (a) 600°C, (b) 700°C, and (c) 800°C.

Table 3

Transition temperature observed from DSC

Heat-treatment temperature (°C)




Transition temperature (°C)

213.2, 414.5

215.5, 415.7

211.2, 412.5


Nanoscale KNbO3 powders were synthesized using the sol-gel method. The average KNbO3 grain size was estimated to be within 100 nm from FESEM and TEM images, and TEM images showed that nanoscale KNbO3 particles had a brick-like morphology.

Synchrotron XRD and Rietveld refinement showed that the ferroelectric orthorhombic phase was retained at room temperature, even for particles smaller than 50 nm. Temperature-dependent XRD confirmed that the actual transition temperature was nearly unchanged and that the T C and phase transition were independent of particle size. Rietveld analysis showed increasing distortions with decreasing particle size.


Precursor solutions were prepared using the sol-gel method reported in the literature [24]. K-ethoxide, Nb-pentaethoxide, 2-methoxyethanol, K-ethoxide, and Nb-pentaethoxide were dissolved in 2-methoxyethanol and refluxed at 120°C for 90 min in dry N2. The concentrations of all precursor solutions were 0.32 mol/L. Weighed gel samples in Pt cells were calcined at 600°C to 800°C for 3 min in air to obtain crystalline powders, with a heating rate of 10°C/min.

Powder sizes and morphologies were examined using FESEM (JEOL JSM-7500F; JEOL Ltd., Tokyo, Japan) and TEM (JEOL JEM-2010; JEOL Ltd.). Crystal structures were determined using high-resolution synchrotron radiation diffractometry at the BL14B1 beam line of Shanghai Synchrotron Radiation Facility, using 1.2398 Å X-rays with a Huber 5021 6-axes diffractometer (energy = 3.5 GeV). Structural refinements were performed using the Rietveld analysis program X'Pert Highscore Plus (PANalytical X-ray Company, Almelo, The Netherlands). Phase transitions were investigated using non-ambient XRD (PANalytical X'pert Pro, Cu Kα, 40 kV, 40 mA) with a Pt strip stage from ambient temperature to 600°C. The differential scanning calorimetry (NETZSCH STA 449F3, Selb, Germany) was used to follow the phase transitions. Nitrogen was used in the DSC measurement at a flow rate of 50 ml/min with a heating rate of 5°C/min. The measurement was carried out in the temperature range of 50°C to 500°C.



differential scanning calorimetry


field emission scanning electron microscopy


potassium niobate


transmission electron microscopy


X-ray diffraction.



This work was supported by the Innovation Program of the Shanghai Municipal Education Commission in China (grant no. 11YZ128).

Authors’ Affiliations

Institute of Marine Materials Science and Engineering, Shanghai Maritime University
State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University
Shanghai Institute of Applied Physics, Chinese Academy of Sciences


  1. Jaffe B, Cook WR, Jaffe H: Piezoelectric Ceramics. New York: Academic Press; 1971.Google Scholar
  2. Uchino K: Piezoelectric actuators 2008: Key factors for commercialization. Adv Mater Res 2008, 55–57: 1–9.View ArticleGoogle Scholar
  3. Lee JH, Hwang KS, Kim TS: The microscopic origin of residual stress for flat self-actuating piezoelectric cantilevers. Nanoscale Res Lett 2011, 6: 55–60.Google Scholar
  4. Desfeux R, Ferri A, Legrand C, Maës L, Da Costa A, Poullain G, Bouregba R, Soyer C, Rèmiens D: Nanoscale investigations of switching properties and piezoelectric activity in ferroelectric thin films using piezoresponse force microscopy. Int J Nanotechnol 2008, 5: 827–837. 10.1504/IJNT.2008.018701View ArticleGoogle Scholar
  5. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M: Lead-free piezoceramics. Nature 2004, 432: 84–86. 10.1038/nature03028View ArticleGoogle Scholar
  6. Deng Z, Dai Y, Chen W, Pei XM, Liao JH: Synthesis and Characterization of Bowl-Like Single-Crystalline BaTiO 3 Nanoparticles. Nanoscale Res Lett 2010, 5: 1217–1221. 10.1007/s11671-010-9629-7View ArticleGoogle Scholar
  7. Harnagea C, Cojocaru CV, Nechache R, Gautreau O, Rosei F, Pignolet A: Towards ferroelectric and multiferroic nanostructures and their characterisation. Int J Nanotechnol 2008, 5: 930–962. 10.1504/IJNT.2008.019827View ArticleGoogle Scholar
  8. Wada S, Seike A, Tsurumi T: Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals. Jpn J Appl Phys 2001, 40: 5690–5697. 10.1143/JJAP.40.5690View ArticleGoogle Scholar
  9. Nakamura K, Tokiwa T, Kawamura Y: Domain structures in KNbO 3 crystals and their piezoelectric properties. J Appl Phys 2002, 91: 9272–9276. 10.1063/1.1476078View ArticleGoogle Scholar
  10. Reeves RJ, Jani MG, Jassemnejad B, Powell RC, Mizell GJ, Fay W: Photorefractive properties of KNbO 3 . Phys Rev B 1991, 43: 71–82. 10.1103/PhysRevB.43.71View ArticleGoogle Scholar
  11. Zgonik M, Schlesser R, Biaggio I, Voit E, Tscherry J, Günter P: Materials constants of KNbO 3 relevant for electrooptics and acoustooptics. J Appl Phys 1993, 74: 1287–1297. 10.1063/1.354934View ArticleGoogle Scholar
  12. Baumert JC, Walther C, Buchmann P, Kaufmann H, Melchior H, Gunter P: KNbO 3 electro-optic induced optical wave-guide cutoffs modulator. Appl Phys Lett 1985, 46: 1018–1020. 10.1063/1.95796View ArticleGoogle Scholar
  13. Shoji I, Kondo T, Kitamoto A, Shirane M, Ito R: Absolute scale of second-order nonlinear-optical coefficients. J Opt Soc Am Opt Phys 1997, 14B: 2268–2294.View ArticleGoogle Scholar
  14. Shirane G, Danner H, Pavlovic A, Pepinsky R: Phase Transitions in Ferroelectric KNbO 3 . Phys Rev 1954, 93: 672–673. 10.1103/PhysRev.93.672View ArticleGoogle Scholar
  15. Akdogan EK, Safari A: Thermodynamic theory of intrinsic finite size effects in PbTiO 3 nanocrystals. II. Dielectric and piezoelectric properties. J Appl Phys 2007, 101: 064115. 10.1063/1.2713348View ArticleGoogle Scholar
  16. Spanier JE, Kolpak AM, Urban JJ, Grinberg I, Ouyang L, Yun WS, Rappe AM, Park H: Ferroelectric phase transition in individual single-crystalline BaTiO 3 nanowire. Nano Lett 2006, 6: 735–739. 10.1021/nl052538eView ArticleGoogle Scholar
  17. Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Auciello O, Fuoss PH, Thompson C: Ferroelectricity in ultrathin perovskite films. Science 2004, 304: 1650–1653. 10.1126/science.1098252View ArticleGoogle Scholar
  18. Wang CL, Smith SRP: Landau theory of asymmetric behaviour in ferroelectric thin films. Solid State Commun 1996, 99: 559–562. 10.1016/0038-1098(96)00267-0View ArticleGoogle Scholar
  19. Ayyub P, Palkar VR, Chattopadhyay S, Multani MS: Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B 1995, 51: 6135–6138. 10.1103/PhysRevB.51.6135View ArticleGoogle Scholar
  20. Thapa D, Palkar VR, Kurup MB, Malik SK: Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 2004, 58: 2692–2694. 10.1016/j.matlet.2004.03.045View ArticleGoogle Scholar
  21. Li G, Boerio-Goates J, Woodfield BF, Li L: Evidence of linear lattice expansion and covalency enhancement in rutile TiO 2 nanocrystals. Appl Phys Lett 2004, 85: 2059–2061. 10.1063/1.1790596View ArticleGoogle Scholar
  22. Ishikawa K, Uemori T: Surface relaxation in ferroelectric perovskites. Phys Rev B 1999, 60: 11841–11845. 10.1103/PhysRevB.60.11841View ArticleGoogle Scholar
  23. Smith MB, Page K, Siegrist T, Redmond PL, Walter EC, Seshadri R, Brus LE, Steigerwald ML: Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO 3 . J Am Chem Soc 2008, 130: 6955–6963. 10.1021/ja0758436View ArticleGoogle Scholar
  24. Tanaka K, Kakimoto KI, Ohsato H: Morphology and crystallinity of KNbO 3 -based nano powder fabricated by sol-gel process. J Eur Ceram Soc 2007, 27: 3591–3595. 10.1016/j.jeurceramsoc.2007.02.070View ArticleGoogle Scholar


© Chen et al; licensee Springer. 2011

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.