Analytical expression of Kondo temperature in quantum dot embedded in AharonovBohm ring
 Ryosuke Yoshii^{1}Email author and
 Mikio Eto^{1}
DOI: 10.1186/1556276X6604
© Yoshii and Eto; licensee Springer. 2011
Received: 3 September 2010
Accepted: 23 November 2011
Published: 23 November 2011
Abstract
We theoretically study the Kondo effect in a quantum dot embedded in an AharonovBohm ring, using the "poor man's" scaling method. Analytical expressions of the Kondo temperature T _{K} are given as a function of magnetic flux Φ penetrating the ring. In this Kondo problem, there are two characteristic lengths, ${L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right$ and L _{K} = ħv _{F} = T _{K}, where v _{F} is the Fermi velocity and ${\stackrel{\u0303}{\epsilon}}_{0}$ is the renormalized energy level in the quantum dot. The former is the screening length of the charge fluctuation and the latter is that of the spin fluctuation, i.e., size of Kondo screening cloud. We obtain diferent expressions of T _{K}(Φ) for (i) L _{c} ≪ L _{K} ≪ L, (ii) L _{c} ≪ L ≪ L _{K}, and (iii) L ≪ L _{c} ≪ L _{K}, where L is the size of the ring. T _{K} is remarkably modulated by Φ in cases (ii) and (iii), whereas it hardly depends on Φ in case (i).
PACS numbers:
Introduction
Since the first observation of the Kondo effect in semiconductor quantum dots [1–3], various aspects of Kondo physics have been revealed, owing to the artificial tunability and flexibility of the systems, e.g., an enhanced Kondo effect with an even number of electrons at the spinsinglettriplet degeneracy [4], the SU(4) Kondo effect with S = 1/2 and orbital degeneracy [5], and the bonding and antibonding states between the Kondo resonant levels in coupled quantum dots [6, 7]. One of the major issues which still remain unsolved in the Kondo physics is the observation of the Kondo singlet state, socalled Kondo screening cloud. The size of the screening cloud is evaluated as L _{K} = ħv _{F}/T _{K}, where v _{F} is the Fermi velocity and T _{K} is the Kondo temperature. There have been several theoretical works on L _{K}, e.g., ringsize dependence of the persistent current in an isolated ring with an embedded quantum dot [8], Friedel oscillation around a magnetic impurity in metal [9], and spinspin correlation function [10, 11].
We focus on the Kondo effect in a quantum dot embedded in an AharonovBohm (AB) ring. In this system, the conductance shows an asymmetric resonance as a function of energy level in the quantum dot, socalled FanoKondo effect. This is due to the coexistence of onebody interference effect and manybody Kondo effect, which was studied by the equationofmotion method with the Green function [12], the numerical renormalization group method [13], the Bethe ansatz [14], the densitymatrix renormalization group method [15], etc. This FanoKondo resonance was observed experimentally [16]. The interference effect on the value of T _{K}, however, has not been fully understood [17, 18].
In our previous work [19], we examined this problem in the small limit of AB ring using the scaling method [20]. Our theoretical method is as follows. First, we create an equivalent model in which a quantum dot is coupled to a single lead. The AB interference effect is involved in the fluxdependent density of states in the lead. Second, the twostage scaling method is applied to the reduced model, to renormalize the energy level in the quantum dot by taking into account the charge fluctuation and evaluate T _{K} by taking spin fluctuation [21]. This method yields T _{K} in an analytical form.
The purpose of this article is to derive an analytical expression of T _{K} for the finite size of the AB ring, using our theoretical method. We find two characteristic lengths. One is the screening length of the charge fluctuation, ${L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right$ with ${\stackrel{\u0303}{\epsilon}}_{0}$ being the renormalized energy level in the quantum dot, which appears in the first stage of the scaling. The other is the size of Kondo screening cloud, L _{K}, which is naturally obtained in the second stage. In consequence, the analytical expression of T _{K} is different for situations (i) L _{c} ≪ L _{K} ≪ L, (ii) L _{c} ≪ L ≪ L _{K}, and (iii) L ≪ L _{c} ≪ L _{K}, where L is the size of the ring. We show that T _{K} strongly depends on the magnetic flux Φ penetrating the AB ring in cases (ii) and (iii), whereas it hardly depends on Φ in case (i).
Model
where ${d}_{\sigma}^{\u2020}$ and d _{ σ } are creation and annihilation operators, respectively, of an electron in the quantum dot with spin σ. ${a}_{i,\sigma}^{\u2020}$ and a _{ i,σ }are those at site i with spin σ in the leads and the reference arm of the ring. ${\widehat{n}}_{\sigma}={d}_{\sigma}^{\u2020}{d}_{\sigma}$ is the number operator in the dot with spin σ. U is the charging energy in the dot.
We consider the Coulomb blockade regime with one electron in the dot, ε _{0}, ε _{0} + U ≫ Γ, where Γ = Γ_{L} + Γ is the level broadening. ${\Gamma}_{\alpha}=\pi {\nu}_{0}{V}_{\alpha}^{2}$, with ν _{0} being the local density of states at the end of semiinfinite leads. We analyze the vicinity of the electronhole symmetry of ε _{0} ≈ ε _{0} + U.
where A _{ k } and B _{ k } are determined so that $\u3008d\left{H}_{\mathsf{\text{T}}}\right{\stackrel{\u0304}{\psi}}_{k}\u3009=0$ with dot state d〉. In consequence, mode ψ _{ k }〉 is coupled to the dot via H _{T}, whereas $\mid {\stackrel{\xb0}{\psi}}_{k}\u3009$ is completely decoupled.
where α = 4Γ_{L}Γ_{R}/(Γ_{L} + Γ_{R})^{2} is the asymmetric factor for the tunnel couplings of quantum dot.
The AB interference effect is involved in the fluxdependent density of states in the lead, υ(ε _{ k }) in Eq. (6). As schematically shown in Figure 1(b), υ(ε _{ k }) oscillates with the period of ε _{T}, where ε _{T} = ħv _{F}/L is the Thouless energy for the ballistic systems. We assume that ε _{T} ≪ D _{0}.
Scaling analysis
We apply the twostage scaling method to the reduced model. In the first stage, we consider the charge fluctuation at energies of D ≫ ε _{0}. In this region, the number of electrons in the quantum dot is 0, 1, or 2. We reduce the energy scale from bandwidth D _{0} to D _{1} where the charge fluctuation is quenched. By integrating out the excitations in the energy range of D _{1} < D < D _{0}, we renormalize the energy level in the quantum dot ε _{0}. In the second stage of scaling, we consider the spin fluctuation at low energies of D < D _{1}. We make the Kondo Hamiltonian and evaluate the Kondo temperature.
Renormalization of energy level
Si(x) goes to 0 as x → 0 and π/2 as x → ∞.
when ${\epsilon}_{\mathsf{\text{T}}}\gg \left{\stackrel{\u0303}{\epsilon}}_{0}\right$, and ${\stackrel{\u0303}{\epsilon}}_{i}={\epsilon}_{i}$ when ${\epsilon}_{\mathsf{\text{T}}}\ll \left{\stackrel{\u0303}{\epsilon}}_{0}\right$. These results can be rewritten in terms of length scale. We introduce ${L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right$, which corresponds to the screening length of charge fluctuation. When L ≪ L _{c}, the renormalized level ${\stackrel{\u0303}{\epsilon}}_{i}$ is given by Equation 11. When L ≫ L _{c}, the energy level is hardly renormalized and is independent of ϕ.
Renormalization of exchange coupling
The energy scale D where the fixed point (J → ∞) is reached yields the Kondo temperature.
where $J={V}^{2}\left({\epsilon}_{0}{}^{1}+{\epsilon}_{1}^{1}\right)$.
where f(ϕ) = [1  f(k _{F} L + π/2, ϕ)]^{1}.
where γ ≈ 0.57721 is the Euler constant.
Conclusions
We have theoretically studied the Kondo effect in a quantum dot embedded in an AB ring. The twostage scaling method yields an analytical expression of the Kondo temperature T _{K} as a function of AB phase ϕ of the magnetic flux penetrating the ring. We have obtained different expressions of T _{K}(ϕ) for (i) L _{c} ≪ L _{K} ≪ L, (ii) L _{c} ≪ L ≪ L _{K}, and (iii) L ≪ L _{c} ≪ L _{K}, where L is the size of the ring, ${L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right$ is the screening length of the charge fluctuation, and L _{K} = ħν _{F}/T _{K} is the screening length of the charge fluctuation, i.e., size of Kondo screening cloud. T _{K} strongly depends on ϕ in cases (ii) and (iii), whereas it hardly depends on ϕ in case (i).
Abbreviation
 AB:

AharonovBohm.
Declarations
Acknowledgements
This study was partly supported by a GrantinAid for Scientific Research from the Japan Society for the Promotion of Science, and by Global COE Program "HighLevel Global Cooperation for LeadingEdge Platform on Access Space (C12)."
Authors’ Affiliations
References
 GoldhaberGordon D, Shtrikman H, Mahalu D, AbuschMagder D, Meirav U, Kastner MA: Kondo effect in a singleelectron transistor. Nature 1998, 391: 156. 10.1038/34373View Article
 Cronenwett SM, Oosterkamp TH, Kouwenhoven LP: A tunable Kondo effect in quantum dots. Science 1998, 281: 540.View Article
 van der Wiel WG, De Franceschi S, Fujisawa T, Elzerman JM, Tarucha S, Kouwenhoven LP: Science. 2000, 289: 2105. 10.1126/science.289.5487.2105View Article
 Sasaki S, De Franceschi S, Elzerman JM, van der Wiel WG, Eto M, Tarucha S, Kouwenhoven LP: Kondo effect in an integerspin quantum dot. Nature 2000, 405: 764. 10.1038/35015509View Article
 Sasaki S, Amaha S, Asakawa N, Eto M, Tarucha S: Enhanced Kondo effect via tuned orbital degeneracy in a spin 1/2 artificial atom. Phys Rev Lett 2004, 93: 17205.View Article
 Aono T, Eto M, Kawamura K: Conductance through quantum dot dimer below the Kondo temperature. J Phys Soc Jpn 1998, 67: 1860. 10.1143/JPSJ.67.1860View Article
 Jeong H, Chang AM, Melloch MR: The Kondo effect in an artificial quantum dot molecule. Science 2001, 293: 2221. 10.1126/science.1063182View Article
 Affleck I, Simon P: Detecting the Kondo screening cloud around a quantum dot. it Phys Rev Lett 2001, 86: 432. 10.1103/PhysRevLett.86.432View Article
 Affleck I, Borda L, Saleur H: Friedel oscillations and the Kondo screening cloud. Phys Rev B 2008, 77: 180404(R).View Article
 Borda L: Kondo screening cloud in a onedimensional wire: Numerical renormalization group study. Phys Rev B 2008, 75: 041307(R).View Article
 Holzner A, McCulloch I, Schollwock U, Delft J, HeidrichMeisner F: Kondo screening cloud in the singleimpurity Anderson model: A density matrix renormalization group study. Phys Rev B 2009, 80: 205114.View Article
 Bulka BR, Stefański P: Fano and Kondo resonance in electronic current through nanodevices. Phys Rev Lett 2001, 86: 5128. 10.1103/PhysRevLett.86.5128View Article
 Hofstetter W, König J, Schoeller H: Kondo Correlations and the Fano Effect in Closed AharonovBohm Interferometers. Phys Rev Lett 2001, 87: 156803.View Article
 Konik RM: KondoFano resonances in quantum dots; results from the Bethe ansatz. J Stat Mech: Theor Exp 2004, 2004: L11001. 10.1088/17425468/2004/11/L11001View Article
 Maruyama I, Shibata N, Ueda K: Theory of FanoKondo effect of transport properties through quantum dots. J Phys Soc Jpn 2004, 73: 3239. 10.1143/JPSJ.73.3239View Article
 Katsumoto S, Aikawa H, Eto M, Iye Y: Tunable Fano]Kondo effect in a quantum dot with an Aharonov]Bohmring. Phys Status Solidi C 2006, 3: 4208. 10.1002/pssc.200672880View Article
 Simon P, Affleck I: Finitesize effects in conductance measurements on quantum dots. Phys Rev Lett 2002, 89: 206602.View Article
 Simon P, EntinWohlman O, Aharony A: Fluxdependent Kondo temperature in an AharonovBohm interferometer with an inline quantum dot. Phys Rev B 2005, 72: 245313.View Article
 Yoshii R, Eto M: Scaling Analysis for Kondo Effect in Quantum Dot Embedded in AharonovBohm Ring. J Phys Soc Jpn 2008, 77: 123714. 10.1143/JPSJ.77.123714View Article
 Anderson PW: A poor man's derivation of scaling laws for the Kondo problem. J Phys C 1970, 3: 2439.
 Haldane FDM: Scaling theory of the asymmetric Anderson model. Phys Rev Lett 1978, 40: 416. 10.1103/PhysRevLett.40.416View Article
 Yoshii R, Eto M: Scaling analysis of Kondo screening cloud in a mesoscopic ring with an embedded quantum dot. Phys Rev B 2011, 83: 165310.View Article
 Eto M: Enhancement of Kondo Effect in Multilevel Quantum Dots. J Phys Soc Jpn 2005, 74: 95. 10.1143/JPSJ.74.95View Article
Copyright
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.