Formation of silicon nanostructures with a combination of spacer technology and deep reactive ion etching

  • Daniel CS Bien1Email author,

    Affiliated with

    • Hing Wah Lee1 and

      Affiliated with

      • Siti Aishah Mohamad Badaruddin1

        Affiliated with

        Nanoscale Research Letters20127:288

        DOI: 10.1186/1556-276X-7-288

        Received: 16 April 2012

        Accepted: 24 May 2012

        Published: 6 June 2012

        Abstract

        A new method of fabricating high aspect ratio nanostructures in silicon without the use of sub-micron lithographic technique is reported. The proposed method comprises two important steps including the use of CMOS spacer technique to form silicon nitride nanostructure masking followed by deep reactive ion etching (DRIE) of the silicon substrate to form the final silicon nanostructures. Silicon dioxide is used as the sacrificial layer to form the silicon nitride nanostructures. With DRIE a high etch selectivity of 50:1 between silicon and silicon nitride was achieved. The use of the spacer technique is particularly advantageous where self-aligned nanostructures with potentially unlimited lengths are formed without the need of submicron lithographic tools and resist materials. With this method, uniform arrays of 100 nm silicon nanostructures which are at least 4 μm tall with aspect ratio higher than 40 were successfully fabricated.

        Keywords

        Silicon Nanostructures Nano-masking High-aspect ratio Deep reactive ion etching Spacers

        Background

        As microdevices shrinks towards nanoscale, formation of high aspect ratio nanostructures will be more challenging. These nanostructures has numerous applications such as photonic crystals[1, 2], thermoelectric generators[3], sensors[4], resonators[5], nanocapacitors[6] and nano-molds[7] for nanoimprint lithography. The aspect ratio of the device is defined by the depth to width ratio of the structure.

        Typically, in semiconductor device fabrication, a combination of sub-micron lithography techniques and etching are commonly used in generating patterns with nano dimensions. Such techniques includes electron beam lithography[8], dip-pen lithography[9], near field scanning probe lithography[10], nanoimprint lithography[7] and x-ray lithography[11]. However, these techniques might not be suitable to produce high aspect ratio nanostructures as there is resist imposed limitations during etching, namely the resist thickness is thin and unable to withstand long durations of high power plasma etching. Alternatively, silicon nanostructures or nanowires can also be synthesized by bottoms-up method via chemical vapour deposition[12], laser-ablation[13] and thermal evaporation[14] techniques. However, organising these nanowires into ordered arrays is challenging and the synthesis process often requires the use of metal catalyst or nano-powders which are not compatible with the standard CMOS fabrication processes.

        In this letter, we demonstrate a new method of forming high aspect ratio silicon nanostructures, where very accurate alignment of the nanostructures can be achieved because the alignment is not determined by the lithographic tool but by the spacer technique used. The fabrication method is divided into two parts where arrays of silicon nitride nanostructures are first formed by the CMOS spacer method which is typically used in the fabrication of nanometer transistors. The formed nitride nanostructured arrays are then used as a masking layer during the silicon etching process. To produce an array of silicon nanostructures, we etch the silicon substrate in an inductively coupled plasma, Tegal AMS 110 DRIE system. Further details are described in the following methodology and results sections.

        Method

        The process of forming the silicon nanostructures is illustrated in Figure1. All experiments were conducted on 700 μm thick, 200 mm diameter silicon substrates. First, a 200 nm thick silicon dioxide (SiO2) layer was thermally grown by wet oxidation. The SiO2 layer was then photolithographically patterned into lines and etched with a combination of CF4 and CHF3 plasma in a reactive ion etching system (Figure1a). A silicon nitride (Si3N4) layer is deposited onto the SiO2/Silicon surfaces by low pressure chemical vapor deposition, LPCVD (Figure1b). Silicon nitride spacers were then formed by time controlled etching of the nitride layer with tetrafluoromethane (CF4) and trifluoromethane (CHF3) plasma (Figure1c). The silicon nitride spacers will be used as an etch mask during the formation of the silicon nanostructures. The widths of the nitride spacers are in correlation with the deposited thickness of the PECVD nitride layer and are also dependent on the directionality of the plasma etch. The SiO2 layer was then selectively removed in a buffered hydrofluoric acid (HF) solution leaving behind an array of silicon nitride spacers or nanostructures (Figure1d). When characterizing the etch rates of oxide and nitride in the buffered HF solution it was observed that oxide was etched at a rate of 70 nm/min while the etch rate of nitride in the same solution was approximately 2 nm/min, showing very high selectivity.
        http://static-content.springer.com/image/art%3A10.1186%2F1556-276X-7-288/MediaObjects/11671_2012_Article_1073_Fig1_HTML.jpg
        Figure 1

        Process flow for fabricating silicon nanostructures with a combination of silicon nitride nano-spacers and deep reactive ion etching of silicon.

        To form the high aspect ratio silicon nanostructures, the silicon substrate with nitride nano-masking was etched in an inductively coupled plasma (ICP) deep reactive ion etching system (Figure1e). Etching of the silicon utilizes an alternating sulfur hexafluoride (SF6) and octafluorocyclobutane (C4F8) plasmas, where SF6 is used as the etch gas and C4F8 as the passivation gas. During the etch process, the substrate was mechanically clamped and cooled by helium backside pressure to maintains a low temperature at the substrate surface. Detailed process conditions are shown in Table1. Finally the silicon nitride nano-mask can be removed leaving behind only the silicon nanostructures (Figure1f) by etching in buffered HF or in an orthophosphoric acid solution with an etch rate of 20 nm/min at 175°C. The fabricated structures were characterized with a JEOL scanning electron microscope (SEM).
        Table 1

        DRIE of silicon with SF 6 and C 4 F 8 plasma

        Process Conditions

        Value

        Source Power

        1500 W

        Bias Power

        12 W

        SF6 Flow

        250 sccm

        C4F8 Flow

        300 sccm

        Silicon Etch Rate

        1.5 μm/min

        Results and discussions

        Utilising a combination of spacer method and deep reactive ion etching presented in the previous section, fabricated silicon nanostructures is illustrated in Figure2, showing an array (Figure2a) and a close-up view (Figure2b) of the formed nanostructures. Results achieved shows good etch selectivity between silicon and silicon nitride (Si3N4) with silicon etch rate of 1.5 μm/min and an etch selectivity value of 50:1 between silicon and Si3N4. A higher etch selectivity of 70:1 was observed between silicon and silicon dioxide (SiO2). However, in this work SiO2 is used as the sacrificial layer to form the Si3N4 nano-masking. It is desirable that at least 20 nm of the mask layer remains after etching to inhibit roughening of the silicon surface.
        http://static-content.springer.com/image/art%3A10.1186%2F1556-276X-7-288/MediaObjects/11671_2012_Article_1073_Fig2_HTML.jpg
        Figure 2

        SEM images of (a) an array; and (b) a close-up view of silicon nanostructures formed with a combination of spacer method and deep reactive ion etching.

        Significantly high aspect ratio silicon nanostructures were successfully formed with this method. 100 nm nanostructures were etched into the silicon substrate to a depth of 2.3 μm and 4.2 with aspect ratios of 23 and 42 as illustrated in Figures3 and4 respectively. The achieved aspect ratio of at least 40 is much higher than those previously published by researchers working with nanostructures. An aspect ratio of 20 was achieved by Chang et al.[15] with a combination of nickel masking and reactive ion etching; aspect ratio of 4.4 achieved by Suh et al.[16] by nanoimprinting and capillary force lithography; aspect ratio of 5.5 achieved by Cho et al.[17] by nanoimprinting with poly-mthyl-methacrylate (PMMA); aspect ratio of 3 achieved by Kwon et al.[10] using near field scanning optical lithography and potassium hydroxide etching with silicon nitride masking; aspect ratio of 25 achieved by Henry et al.[18] by cryogenic silicon etching with alumina masking; aspect ratio of 10 achieved by Peroz et al.[19] by step and repeat nanoimprint lithography; and aspect ratio of 10 achieved by Gowrishankar et al.[20] by block copolymer lithography and NF3 based reactive ion etching.
        http://static-content.springer.com/image/art%3A10.1186%2F1556-276X-7-288/MediaObjects/11671_2012_Article_1073_Fig3_HTML.jpg
        Figure 3

        Fabricated 100 nm silicon nanostructures with at least 20:1 aspect ratio.

        http://static-content.springer.com/image/art%3A10.1186%2F1556-276X-7-288/MediaObjects/11671_2012_Article_1073_Fig4_HTML.jpg
        Figure 4

        Fabricated 100 nm silicon nanostructures with at least 40:1 aspect ratio.

        Besides having high aspect ratio nanostructures, very accurate structure alignment are achieved because the structure alignment is not determined by lithographic tool but by the spacer method, where the length of the fabricated structures can be unlimited. With the spacer method, dimensions as fine as 10 nm can be achieved. However, there is a dimension limitation during the silicon etch with SF6 and C4F8 plasma as the etch process would typically create sidewall scalloping greater than 10 nm. Further etching of silicon nitride in buffered HF can further reduce the width of the nanostructures, where the lower limit of the achievable width of the nanostructures is dependent on the silicon dioxide thickness, silicon nitride thickness, uniformity of the nitride coverage and directionality of the etch process. It is also possible to reduce the dimensions of the nanostructures through lateral isotropic plasma etching of the nitride spacers where the process can be controlled by varying the etch recipes used which is dependent on gas ratios, chamber pressure and rf power. However, to achieve accurate directional control is difficult and the etch rate of nitride can still be high. With wet etching, the etch rate of nitride in buffered HF was found to be only 2 nm/min which allows better control of the final nitride dimensions.

        Conclusions

        In summary, we have demonstrated a method of fabricating high aspect ratio nanostructures in silicon using a combination of CMOS spacer method to form silicon nitride nanostructure masking and deep reactive ion etching of silicon with SF6 and C4F8 plasma for applications in photonics, photovoltaic and nano-electromechanical (NEM) devices. The demonstrated fabrication method is cost effective where it does not require the use of sub-micron lithographic tools and techniques. Alignment of the silicon nitride nano-masking can be controlled accurately and the final silicon nanostructures formed are of aspect ratio higher than 40 which is significantly higher than that produced previously for nanostructures. In this work, etch selectivity between silicon and silicon nitride of approximately 50:1 was achieved and the authors believe that the dimensions of the nanostructures can be further reduced by thinning the silicon nitride nano-masking in buffered hydrofluoric acid solution.

        Declarations

        Acknowledgement

        This research was supported by eScience funding 01-03-04-SF0027 and National Nanotechnology Directorate funding NND/ND/(2)/TD11-012 under the Ministry of Science, Technology and Innovation (MOSTI), Malaysia.

        Authors’ Affiliations

        (1)
        Nanoelectronics Cluster, MIMOS Berhad

        References

        1. Chang ASP, Peroz C, Liang X, Dhuey S, Harteneck B, Cabrini S: Nanoimprint planarization of high aspect ratio nanostrcutures using inorganic and organic resist materials. J Vac Sci Technol B 2009, 27: 6. 10.1116/1.3032901View Article
        2. Poborchii VV, Tada T, Kanayama T: A visible-near infrared range photonic crystal made up of Si nanopillars. App Phys Lett 1999, 75: 3276. 10.1063/1.125323View Article
        3. Stranz A, Sökmen Ü, Kähler J, Waag A, Peiner E: Measurements of thermoelectric properties of silicon pillars. Sensors and Actuators A: Phy 2011, 171: 1. 10.1016/j.sna.2011.08.014View Article
        4. Schmitz GJ, Brucker C, Jacobs P: Manufacture of high aspect-ratio micro-hair sensor arrays. J Micromech Microend 2005, 15: 10. 10.1088/0960-1317/15/7/002View Article
        5. Malak M, Pavy N, Marty F, Peter Y, Liu AQ, Bourouina T: Stable, high-Q fabry-perot resonators with long cavity based on curved, all-silicon, high reflectance mirrors, IEEE 24th Int. Conf. Micro Electro Mechanical Systems (MEMS). 2011, 720.
        6. Chang SW, Oh J, Boles T, Thompson CV: Fabrication of silicon nanopillar-based nanocapacitor arrays. Appl Phys Lett 2010, 96: 153108. 10.1063/1.3374889View Article
        7. He J, Richter K, Bartha JW, Howitz S: Fabrication of silicon template with smooth tapered sidewall for nanoimprint lithography. J Vac Sci Technol B 2009, 29: 6.
        8. Tada T, Kanayama T: Fabrication of silicon nanostructures with electron-beam lithography using AIN as a dry-etch durable resist. J Vac Sci Technol B 1993, 11: 6.View Article
        9. Gundiah G, John NS, Thomas PJ, Kulkami GU, Rao CNR, Heun S: Dip-pen nanolithography with magnetic Fe2O3 nanocrystals. Appl Phys Lett 2004, 84: 26.View Article
        10. Kwon SJ, Jeong YM, Jeong SH: Fabrication of high-aspect-ratio silicon nanostructures using near-field scanning optical lithography and silicon anisotropic wet-etching process. Appl Phys A 2007, 86: 11–18.View Article
        11. Kim YC, Lee SS: Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask. J Micromech Microeng 2008, 18: 1.
        12. Suzuki H, Araki H, Tosa M, Noda T: Formation of silicon nanowires by CVD using gold catalysts at low temperatures. Mater Trans 2007, 48: 8.
        13. Fukata N, Oshima T, Tsurui T, Ito S, Murakami K: Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam. Sci Technol Adv Mater 2005, 6: 628. 10.1016/j.stam.2005.06.015View Article
        14. Pan H, Lim S, Poh C, Sun H, Wu X, Feng Y, Lin J: Growth of Si nanowires by thermal evaporation. Nanotechnol 2005, 16: 4.
        15. Chang YF, Chou QR, Lin JY, Lee CH: Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique. Appl Phys A 2007, 86: 193–196.View Article
        16. Suh KY, Jeong HE, Park JW, Lee SH, Kim JK: Fabrication of high aspect ratio nanostructures using capillary force lithography. Korean J Chem Eng 2006, 23: 4.View Article
        17. Cho YH, Park J, Park H, Cheng X: Fabrication of high-aspect-ratio polymer nanochennels using a novel Si Nanoimprint mold and solvent assisted sealing. Microfluid Nanofluid 2010, 9: 163–170. 10.1007/s10404-009-0509-3View Article
        18. Henry MD, Walavalkar S, Homyk A, Scherer A: Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars. Nanotechnol 2009, 20: 255305. 10.1088/0957-4484/20/25/255305View Article
        19. Peroz C, Dhuey S, Cornet M, Vogler M, Olynick D, Cabrini S: Single digit nanofabrication by step-and-repeat nanoimprint lithography. Nanotechnol 2012, 23: 015305. 10.1088/0957-4484/23/1/015305View Article
        20. Gowrishankar V, Miller N, McGehee MD, Matthew JM, Ryu DY, Russell TP, Drockenmuller E, Hawker CJ: Fabrication of densely packed, well-ordered, high aspect ratio silicon nanopillars over large areas using block copolymer lithography. Thin Solid Films 2006, 513: 289–294. 10.1016/j.tsf.2006.01.064View Article

        Copyright

        © Bien et al.; licensee Springer. 2012

        This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.