High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique

  • Yasuhiko Hayashi1Email author,

    Affiliated with

    • Tomoharu Tokunaga2,

      Affiliated with

      • Toru Iijima1,

        Affiliated with

        • Takuya Iwata1,

          Affiliated with

          • Golap Kalita1,

            Affiliated with

            • Masaki Tanemura1,

              Affiliated with

              • Katsuhiro Sasaki2 and

                Affiliated with

                • Kotaro Kuroda2

                  Affiliated with

                  Nanoscale Research Letters20127:448

                  DOI: 10.1186/1556-276X-7-448

                  Received: 17 April 2012

                  Accepted: 29 June 2012

                  Published: 8 August 2012


                  Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.


                  Carbon nanotubes in-situ filling method Metal nanowires Encapsulation Transmission electron microscopy (TEM) Environmental TEM Melting temperature


                  Encapsulation of one-dimensional foreign materials into carbon nanotubes (CNTs) during CNT growth has received attention because they are expected to possess new physical and chemical properties based on CNT induced by nanospace [1, 2]. Various metal nanowires have been successfully encapsulated within CNTs, employing mainly two kinds of methods. One of them is that CNTs are initially opened at their tube tips and subsequently filled with molten materials through capillary action [35]. The other one is an in-situ filling method, where the metals can be filled into the CNTs [68]. Among a variety of interesting applications, a promising application of ferromagnetic metal nanowires (such as Fe, Co, and Ni) encapsulated within a CNT is the high-density magnetic recording media due to their nanoscale size and strong anisotropic property, leading to small bit size [212]. Furthermore, the graphite layer provides an effective barrier against oxidation and consequently ensures a long-term stability of the metal inside CNTs [13].

                  Although it is very interesting to investigate a reaction process within the CNT due to the confined nanospace at various conditions, very few studies have been made so far on the detailed in-situ characterizations of the nanowire structure at various temperatures after encapsulation of the metal nanowire within CNTs.

                  Here, we present growth of self-assembled aligned Pd-Co-based multi-segmented one-dimensional metal nanowires encapsulated within multiwall CNT (MWCNT) arrays on Si by bias-enhanced microwave plasma chemical vapor deposition (MPCVD) with CH4 and H2. The metal nanowires encapsulated within MWCNTs were analyzed with transmission electron microscopy (TEM). Furthermore, in-situ microscopic environmental TEM (ETEM) was employed for in-situ observations of nanowires encapsulated within MWCNTs at a high temperature above melting points of metals.


                  The Pd-Co-based nanowire encapsulated within MWCNTs was grown by bias-enhanced MPCVD using a 2.45-GHz, 1.5-kW microwave power supply, as described elsewhere [14]. A primary 6-nm-thick Pd metal thin layer and a secondary 9-nm-thick Co metal thin layers (Co/Pd: total thickness of 15 nm) were deposited on the thin barrier layer of SiO2 formed on the Si surface (Co/Pd/SiO2/Si substrate). The question arises why we chose Co/Pd bimetallic layers. Although we have previously reported Pd-based MF-CNTs using bias-enhanced MPCVD, we failed to fill the Co metal into the nanotubes using only a Co catalyst layer on the Si substrate. In combination with the Pd layer, we successfully encapsulated Co inside CNTs [14]. The feed gas, H2, was supplied into the plasma chamber to maintain a pressure of 20 Torr. The substrate was gradually heated up to 973 K by a radio-frequency graphite heater, and a microwave plasma was turned on to 600 kW. The Pd-Co-based nanowire within MWCNTs was grown for 15 min under a negative bias of 400 V at that maintained substrate temperature.

                  A JEOL (JEM-3010; JEOL Ltd., Akishima, Tokyo, Japan) TEM, operated at 300 kV, was used for room temperature observations. A Hitachi (H-9000NAR; Hitachi, Ltd., Minato, Tokyo, Japan) ETEM, operated at an accelerating voltage of 300 kV and equipped with a Gatan GIF and a Gatan CCD camera (Gatan, Inc., Pleasanton, CA, USA), was used for in-situ observations. A resistance-heating tungsten wire sample holder of a TEM was used to heat the nanowire encapsulated within MWCNTs up to 1,550°C in vacuum with an accuracy of ±50°C depending on the sample position [15].

                  Results and discussion

                  Figure 1a shows the scanning electron microscope (SEM) cross-section image of the typical sample for subsequent characterization via ETEM. Based on the SEM image, the wire- or rod-like blackish color of the metal inside the CNT tubes were clearly observed. Therefore, the encapsulation of the metal inside the CNTs has successfully occurred during CNT growth. Figure 1b shows the TEM images and electron diffraction patterns of the bottom and tip parts of the Pd-Co-based nanowire encapsulated within the MWCNT. We have highlighted the one-dimensional nanowire structure fully encapsulated within MWCNTs, found in the as-grown sample by TEM. Based on Figure 1a,d, it is noteworthy that the inner diameter of the MWCNTs is significantly reduced from the lower (near to the tube bottom, ca. 102 nm) to the upper sites (near to the tube top, ca. 55 nm). The diffraction patterns were determined as Pd4Si and Co nanowires at the bottom and top parts of the MWCNT, respectively. Details of the tube top part within the MWCNT will be discussed later. We have successfully demonstrated multi-segmented one-dimensional metal nanowires by template-free in-situ filling technique (see Figure 2a). Based on our previous study, the demixing in a solid-soluted Co-Pd alloy was induced by microwave plasma hydrogen irradiation at a relatively lower temperature. Then, these intermetallic compounds decomposed into Pd/Co by two phases when subjected to growth temperature at 973 K [16]. The catalyst particle was assumed to be composed of Co and Pd regions, where the Co region is onto the Pd region due to the interaction of Co or Pd metals with the SiO2 layer, which may provide a key clue to explain the nature of multi-segmented metal nanowires encapsulated within CNTs [17]. The Pd region is easier to react with the SiO2 layer, giving the Pd4Si, rather than Co region because of the order of Co and Pd regions on the SiO2/Si substrate. Although in-situ filling of Fe, Co, Ni, or Cu can also be achieved in chemical vapor deposition systems [7, 18] by pyrolysis of organometallic compounds, most of the research so far has reported a single metal encapsulated within MWCNTs. The Co nanowire encapsulated within the MWCNT at the tip part was always present as the face-centered-cubic (fcc) Co structure based on selected area electron diffraction (SAED) measurements. The reaction between Pd and Si is more favorable than that between Co and Si, so that the dissolved Si from the substrate possibly caused the stoichiometric structure of Pd4Si and Si-incorporated Co during growth of MWCNT [19]. Moreover, it is difficult to form a stable palladium-carbide. The silicide formation of Pd4Si by reaction of Pd with hydrogenated amorphous silicon (a-Si:H) substrate and SiO2 substrate was reported so far [20, 21]. The reduction of Pd/SiO2 catalysts in hydrogen irradiation at 973 K may already lead to a considerable interaction between palladium and silica [21].
                  Figure 1

                  SEM, TEM, and SAED. (a) Cross-sectional SEM image. (b) TEM images and selected area electron diffractions observed at the bottom part (a, b) and top part (d, e) of the metal nanowire encapsulated within the MWCNT.

                  Figure 2

                  Selected area electron diffractions observed at room temperature and 1,300°C, respectively, by ETEM.

                  Figure 2 shows the diffraction pattern observed at room temperature and 1,300°C. We clearly observed strain-induced deformation on the spot of graphite G(002). It is very interesting that the solid-state phases remain even at above melting points of Pd4Si (890°C) and Co-Pd (1,250°C). Based on the diffraction pattern, we estimated that the graphene layer distance varies between +0.015 and −0.025 nm at 1,300°C compared to that of RT. Therefore, both positive and negative fluctuations of interlayer spacing of graphene layers at several positions may appear to relax the residual thermal strain. The fluctuation of distance between graphene layers is metastable up to the formation of dislocations in graphene layers.

                  Figure 3a shows the TEM image and electron diffraction pattern observed at 1,550°C by using an ETEM. It is worth mentioning that the tube top region always encapsulated with the Pd-Co nanowire on top of the Pd4Si nanowire even at high temperature. The interface between Pd4Si and Pd-Co becomes blurred with increasing temperature. Ambiguity in the interface structure still exists and needs further investigation by high-resolution ETEM. The encapsulated metals were melted and flowed out from the tip of the CNT after maintaining the sample at the same temperature for 2 h, as shown in Figure 3b. Considering the setting temperature of 1,550°C (accuracy within ±50°C), the generated metallic sphere with a diameter of 143 ± 5 nm is presumably the molten phase based on electron diffraction pattern. The external diameters of the CNT before (Figure 3a) and after (Figure 3b) flowing out of the inner metal are approximately 120 and 95 nm, respectively. This indicates that the thermal expansion of internal metals causes the accumulation of internal pressure inside the CNT [22]. As a result, the CNT tip breaking occurred after a threshold internal pressure.
                  Figure 3

                  TEM images and selected area electron diffractions. Observed at (a) 1,550°C and (b) after 2 h at the same temperature by ETEM.

                  According to the experiments, the diffraction patterns indicate that both Pd4Si and Co-Pd have a crystalline structure even at the melting points. This may be due to the confined nanospace effect. Recently, Kobayashi et al. reported encapsulation of Sn, Pb, Ag, and Au within MWCNTs by capillary action. The results suggest that a confined nanospace prevents crystal growth of metals having a low melting point [23]. Confinement of metals within a nanospace still remains an interesting question for both theoretical research and industrial application.


                  We synthesized multi-segmented one-dimensional metal nanowires within MWCNTs by in-situ filling technique during PECVD growth of MWCNTs. According to the TEM images and SAED of metal nanowires within the MWCNT, the Pd4Si nanowire and fcc Co nanowire on top of the Pd nanowire were encapsulated within the bottom and top parts of the MWCNT, respectively, by in-situ filling technique. The solid-state phases of Pd4Si and Co-Pd remain even at above their melting points at 890°C and 1,250°C, respectively, by ETEM. This may be due to the confined nanospace effect. We observed strain-induced deformation on the spot of graphite G(002) at 1,300°C. The accumulated internal pressure due to high temperature at 1,550°C caused the break of the CNT tip and pushed out the molten metal confirmed by electron diffraction pattern.



                  This work is partially supported by Grant-in-Aid for Scientific Research (B) under contract number 50314084 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. YH would like to thank Dr. N. Kishi, and Prof. T. Soga and Prof. T. Jimbo at NIT for their useful discussion. The authors would like to thank Mr. Y. Horita, Mr. T. Yanagimoto, Prof. K. Kaneko, and Prof. K. Kuroda for their assistance characterizations.

                  Authors’ Affiliations

                  Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho
                  Department of Quantum Engineering, Nagoya University, Furo-cho Chikusa-ku


                  1. Bao J, Tie C, Xu Z, Suo Z, Zhou Q, Hong J: A facile method for creating an array of metal-filled carbon nanotubes. Adv Mater 2002, 14: 1483–1486. 10.1002/1521-4095(20021016)14:20<1483::AID-ADMA1483>3.0.CO;2-6View Article
                  2. Fujita T, Chen MW, Wang XM, Xu BS, Inoke K, Yamamoto K: Electron holography of single-crystal iron nanorods encapsulated in carbon nanotubes. J Appl Phys 2007, 101: 014323–1–014323–5.View Article
                  3. Ajayan PM, Lijima S: Capillarity-induced filling of carbon nanotubes. Nature 1993, 361: 333–334. 10.1038/361333a0View Article
                  4. Tsang SC, Chen YK, Harris PJF, Green MLH: A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372: 159–162. 10.1038/372159a0View Article
                  5. Ugarte D, Châtelain A, de Heer WA: Nanocapillarity and chemistry in carbon nanotubes. Science 1996, 274: 1897–1899. 10.1126/science.274.5294.1897View Article
                  6. Ajayan MP, Colliex C, Lambert JM, Bernier P, Barbedette L, Tence M, Stephan O: Growth of manganese filled carbon nanofibers in the vapor phase. Phys Rev Lett 1994, 72: 1722–1725. 10.1103/PhysRevLett.72.1722View Article
                  7. Gao Y, Liu J, Shi M, Elder SH, Virden JW: Dense arrays of well-aligned carbon nanotubes completely filled with single crystalline titanium carbide wires on titanium substrates. Appl Phys Lett 1999, 74: 3642–3644. 10.1063/1.123208View Article
                  8. Zhang GY, Wang EG: Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl Phys Lett 2003, 82: 1926–1928. 10.1063/1.1562341View Article
                  9. Leonhardt A, Ritschel M, Kozhuharova Graff RA, Mühl Huhle TR, Mönch I, Elefant D, Schneider CM: Synthesis and properties of filled carbon nanotubes. Diamond Relat Mater 2003, 12: 790–793. 10.1016/S0925-9635(02)00325-4View Article
                  10. Tyagi PK, Misra A, Singh MK, Misra DS, Ghatak J, Satyam PV, Le Normand F: High-resolution transmission electron microscopy mapping of nickel and cobalt single-crystalline nanorods inside multiwalled carbon nanotubes and chirality calculations. Appl Phys Lett 2005, 86: 253110–1–253110–3.View Article
                  11. Bao J, Zhou Q, Hong J, Xu Z: Synthesis and magnetic behavior of an array of nickel-filled carbon nanotubes. Appl Phys Lett 2002, 81: 4592–4594. 10.1063/1.1526461View Article
                  12. Chou SY: Patterned magnetic nanostructures and quantized magnetic disks. Proc IEEE 1997, 85: 652–671. 10.1109/5.573754View Article
                  13. Brands M, Posth O O, Dumpich G: Magnetoresistance of carbon-covered Co nanowires. Supperlattices Microstruct 2005, 37: 380–387. 10.1016/j.spmi.2005.01.005View Article
                  14. Hayashi Y, Tokunaga T, Jimbo T, Yogata Y, Toh S, Kaneko K: Corn-shape carbon nanofibers with dense graphite synthesized by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 2004, 84: 2886–2888. 10.1063/1.1666998View Article
                  15. Tokunaga T, Horita Y, Kanematsu T, Nomura I, Iijima T, Hayashi Y, Kuroda K: In-situ TEM observation of internal metal inside metal filled carbon fiber. Diamond Relat Mater 2011, 20: 210–212. 10.1016/j.diamond.2010.12.005View Article
                  16. Tokunaga T, Hayashi Y, Fujita T, Silva SRP, Amaratunga GAJ: Demixing of solid-soluted Co–Pd binary alloy induced by microwave plasma hydrogen irradiation technique. Jpn J Appl Phys 2006, 45: L860-L863. 10.1143/JJAP.45.L860View Article
                  17. Hayashi Y, Fujita T, Tokunaga T, Kaneko K, Butler T, Rupesinghe N, Carey JD, Silva SRP, Amaratunga GAJ: Encapsluation of Co and Pd multi-metal nanowires inside multiwalled carbon nanotubes by microwave plasma chemical vapor deposition. Diamond Relat Mater 2007, 16: 1200–1203. 10.1016/j.diamond.2006.11.039View Article
                  18. Ye XR, Lin L, Wang C, Wai CM: Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes. Adv Mater 2003, 15: 316–319. 10.1002/adma.200390077View Article
                  19. Juszczyk W, Łomot D, Pielaszek J, Karpiński Z: Transformation of Pd/SiO2 catalysts during high temperature reduction. Catalysis Lett 2002, 78: 95–98. 10.1023/A:1014962122813View Article
                  20. Rhodesa HE, Apaia G, Rivauda L, Hunga LS, Mayera JW: UHV interface studies of palladium silicide formation on hydrogenated amorphous silicon films. MRS Symp Proc 1986, 70: 387–392.View Article
                  21. Juszczyk W, Karpiński Z, Łomot D, Pielaszek J: Transformation of Pd/SiO2 into palladium silicide during reduction at 450 and 500 °C. J Catalysis 2003, 220: 299–308. 10.1016/S0021-9517(03)00246-XView Article
                  22. Fan Z, Tao Cui XX, Fan X, Dong L: Proceedings of the 10th IEEE Conference on Nanotechnology (IEEE-NANO2010): August 17–20 2010. In Spheres on pillars: nanobubbling based on attogram mass delivery from metal-filled nanotubes. IEEE, Seoul, Korea. Piscataway; 2010:649–654.
                  23. Kobayashi K, Suenaga K, Saito T, Iijima S: Prevention of Sn and Pb crystallization in a confined nanospace. Small 2010, 6: 1279–1282. 10.1002/smll.201000265View Article


                  © Hayashi et al.; licensee Springer. 2012

                  This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.