Warrier et al. [27]  FC84  Small rectangular parallel channels of D_{h} = 0.75mm  Singlephase forced convection and subcooled and saturated nucleate boiling  3 < x <55% 
${h}_{\mathrm{tp}}={h}_{\mathrm{sp}}\left(1+6{\mathrm{Bo}}^{\frac{1}{16}}5.3\left(1855\mathrm{Bo}\right){\chi}_{\mathrm{v},x}^{0.65}\right)\phantom{\rule{2em}{0ex}}\left(6\right)$
${h}_{\mathrm{sp}}=0.023R{e}_{\mathrm{l}}^{0.8}P{r}_{\mathrm{l}}^{0.4}{\lambda}_{\mathrm{l}}/{D}_{\mathrm{h}}\phantom{\rule{2em}{0ex}}\left(7\right)$

Kandlikar and Balasubramanian [28]  Water, refrigerants, and cryogenic fluids  Minichannels and microchannels  Flow boiling  x <0.7 ~ 0.8 
$\mathrm{Co}<0.65,{h}_{\mathrm{tp}}={h}_{\mathrm{sp}}\left[1.136{\mathrm{Co}}^{0.9}{\left(25F{r}_{\mathrm{lo}}\right)}^{c}+667.2{\mathrm{Bo}}_{\mathrm{lo}}^{0.7}\right]\phantom{\rule{2em}{0ex}}\left(8\right)$
$\mathrm{Co}>0.65,{h}_{\mathrm{tp}}={h}_{\mathrm{sp}}\left[0.6683{\mathrm{Co}}^{0.2}{\left(25F{r}_{\mathrm{lo}}\right)}^{c}+1058{\mathrm{Bo}}_{\mathrm{lo}}^{0.7}\right]\phantom{\rule{2em}{0ex}}\left(9\right)$
h_{sp} is calculated Equation 7 
Sun and Mishima [29]  Water, refrigerants (R11, R12, R123, R134a, R141b, R22, R404a, R407c, R410a) and CO2  Minichannel diameters from 0.21 to 6.05 mm  Flow boiling laminar flow region  Re_{
L
} < 2,000 and Re_{
G
} < 2,000 
${h}_{\mathrm{tp}}=\frac{6R{e}_{\mathrm{lo}}^{1.05}{\mathrm{Bo}}^{0.54}{\lambda}_{\mathrm{l}}}{{\mathrm{We}}_{\mathrm{l}}^{0.191}{\left({\rho}_{\mathrm{l}}/{\rho}_{g}\right)}^{0.142}{D}_{\mathrm{h}}}\phantom{\rule{2em}{0ex}}\left(10\right)$

Bertsch et al. [30]  Hydraulic diameters ranging from 0.16 to 2.92 mm  Minichannels  Flow boiling and vapor quality  0 to 1 
${h}_{\mathrm{tp}}=\left(1{\chi}_{\mathrm{v},x}\right){h}_{\mathrm{nb}}+\left[1+80\left({\chi}_{\mathrm{v},x}^{2}{\chi}_{\mathrm{v},x}^{6}\right){e}^{0.6{\mathrm{Co}}_{\mathrm{f}}}\right]{h}_{\mathrm{sp}}\phantom{\rule{2em}{0ex}}\left(11\right)$
h_{nb} is calculated by Cooper [35]:${h}_{\mathrm{nb}}=55{P}_{\mathrm{R}}^{0.120.087ln\xi}{\left(0.4343ln{P}_{\mathrm{R}}\right)}^{0.55}{M}^{0.5}{q}^{0.67}\phantom{\rule{2em}{0ex}}\left(12\right)$ h_{sp} = χ_{v,x}h_{sp,go} + (1 − χ_{v,x})h_{sp,lo} (13)${h}_{\mathrm{sp},\mathrm{ko}}=\left[3.66+\frac{0.0668R{e}_{\mathrm{ko}}P{r}_{k}{D}_{\mathrm{h}}/L}{1+0.04{\left(R{e}_{\mathrm{ko}}P{r}_{k}{D}_{\mathrm{h}}/L\right)}^{2/3}}\right]\frac{\lambda}{{D}_{\mathrm{h}}}\phantom{\rule{1em}{0ex}}\left(14\right)$${\mathrm{Co}}_{\mathrm{f}}=\sqrt{\frac{\sigma}{g\left({\rho}_{\mathrm{l}}{\rho}_{\mathrm{g}}\right){D}_{\mathrm{h}}^{2}}}\phantom{\rule{2em}{0ex}}\left(15\right)$ 
Temperature  −194°C to 97°C 
Heat flux  4–1,150 kW/m^{2} 
Mass flux  20–3,000 kg/m^{2}s 
Lazarek and Black [31]  R113  Macrochannels 3.15 mm inner diameter tube  Saturated flow boiling   
$N{u}_{x}=30R{e}_{\mathrm{lo}}^{0.857}{\mathrm{Bo}}^{0.714}\phantom{\rule{2em}{0ex}}\left(16\right)\phantom{\rule{0.25em}{0ex}}$

Gungor and Winterton [32]  Water and refrigerants (R11, R12, R22, R113, and R114)  Horizontal and vertical flows in tubes and annuli D = 3 to 32 mm  Saturated and subcooled boiling flow  0.008 < p_{sat} < 203 bar; 12 < G < 61.518 kg/m^{2}s; 0 < x < 173%; 1 < q < 91.534 kW/m^{2}  h_{tp} = (SS_{2} + FF_{2})h_{sp} (17) h_{sp} is calculated Equation 6 S = 1 + 3, 000Bo^{0.86} (18)$F=1.12{\left(\frac{{\chi}_{\mathrm{v},x}}{1{\chi}_{\mathrm{v},x}}\right)}^{0.75}{\left(\frac{{\rho}_{\mathrm{l}}}{{\rho}_{\mathrm{g}}}\right)}^{0.41}\phantom{\rule{2em}{0ex}}\left(19\right)$${S}_{2}=\left\{\begin{array}{l}F{r}_{\mathrm{lo}}^{(0.12\mathrm{Fr}{}_{\mathrm{lo}})}\phantom{\rule{0.25em}{0ex}}\mathrm{if}\phantom{\rule{0.25em}{0ex}}\mathrm{horizontal}\phantom{\rule{0.25em}{0ex}}\mathrm{with}\phantom{\rule{0.25em}{0ex}}F{r}_{\mathrm{lo}}<0.05\\ 1\phantom{\rule{0.25em}{0ex}}\mathit{otherwise}\end{array}\right.\phantom{\rule{2em}{0ex}}\left(20\right)$${F}_{2}=\left\{\begin{array}{l}F{r}_{\mathrm{lo}}^{\left(0.5\right)}\phantom{\rule{0.25em}{0ex}}\mathrm{if}\phantom{\rule{0.25em}{0ex}}\mathrm{horizontal}\phantom{\rule{0.25em}{0ex}}\mathrm{with}\phantom{\rule{0.25em}{0ex}}F{r}_{\mathrm{lo}}<0.05\\ 1\phantom{\rule{0.25em}{0ex}}o\mathrm{therwise}\end{array}\right.\phantom{\rule{2em}{0ex}}\left(21\right)$ 
Liu and Witerton [36]  Water, refrigerants and ethylene glycol  Vertical and horizontal tubes, and annuli  Subcooled and saturated flow boiling   
${h}_{\mathrm{tp}}=\sqrt{{\left(F{h}_{\mathrm{lo}}\right)}^{2}+{\left(S{h}_{\mathrm{nb}}\right)}^{2}}\phantom{\rule{2em}{0ex}}\left(22\right)\phantom{\rule{0.5em}{0ex}}$
h_{nb} is calculated by Cooper [35] (Equation 11)$F=0.35\left[1+{\chi}_{\mathrm{v},x}\frac{{\mu}_{\mathrm{l}}{C}_{\mathrm{p},\mathrm{l}}}{{\lambda}_{\mathrm{l}}}\left(\frac{{\rho}_{\mathrm{l}}}{{\rho}_{\mathrm{v}}}1\right)\right]\phantom{\rule{2em}{0ex}}\left(23\right)$$S=\left[1+0.055{F}^{0.5}R{e}_{\mathrm{lo}}^{0.16}\right]\phantom{\rule{2em}{0ex}}\left(24\right)$ 
Kew and Cornwell [33]  R141b  Single tubes of 1.39–3.69 mm inner diameter  Nucleate boiling, confined bubble boiling, convective boiling, partial dry out   
${h}_{\mathrm{tp}}=30R{e}_{\mathrm{lo}}^{0.857}{\mathrm{Bo}}^{0.714}\frac{{\lambda}_{\mathrm{l}}}{{D}_{\mathrm{h}}}{\left(\frac{1}{1{\chi}_{\mathrm{v},x}}\right)}^{0.143}\phantom{\rule{2em}{0ex}}\left(25\right)$

Yan and Lin [34]  R134a  28 parallel tubes 2 mm  Convective boiling  G = 50 to 200 kg/m^{2}s; q = 0.5 to 2 W/cm^{2} 
${h}_{\mathrm{tp}}=\left({C}_{1}{\mathrm{Co}}^{{C}_{2}}+{C}_{3}{\mathrm{Bo}}^{{C}_{4}}F{r}_{\mathrm{lo}}\right){\left(1{\chi}_{\mathrm{v},\mathrm{m}}\right)}^{0.8}{h}_{\mathrm{l}}\phantom{\rule{2em}{0ex}}\left(26\right)$
h_{l} = 4.364λ_{l}/D_{h} (27)${C}_{m}={C}_{m,1}{\mathrm{Re}}_{\mathrm{lo}}^{{C}_{m,2}}{T}_{\mathrm{R}}^{{C}_{m,3}}\phantom{\rule{2em}{0ex}}\left(28\right)$ The best fitting values for the constants C_{m,1}, C_{m,2}, and C_{m,3} are listed in Table 3 