Open Access

Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition

  • Xishun Jiang1, 2,
  • Miao Zhang1,
  • Shiwei Shi1,
  • Gang He1,
  • Xueping Song1 and
  • Zhaoqi Sun1Email author
Nanoscale Research Letters20149:219

DOI: 10.1186/1556-276X-9-219

Received: 24 December 2013

Accepted: 14 April 2014

Published: 7 May 2014


Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (−0.1, −0.3, −0.5, −0.7, and −0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV–vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.


Cu2O films Microstructure Morphology Optical properties


Known as a p-type semiconductor, cuprous oxide (Cu2O) has the advantages of low consumption, nontoxic, and higher conversion efficiency. Therefore, it is widely used in solar cells, lithium ion batteries, biological sensors, gas sensors, magnetic storage, microdevices, and negative electrodes [16]. The good electro-optical properties of Cu2O make it used as photocatalyst in degradation of organic pollutants and H2 evolution from photoelectrolysis of water under visible light illumination [79]. By far, many deposited methods have been investigated to prepare Cu2O thin films, such as sputtering [10, 11], thermal oxidation [12], chemical vapor deposition [13], anodic oxidation [14], spray pyrolysis [15, 16], chemical oxidation [17], electrodeposition [18, 19], and so on. Among these techniques, electrodeposition is an inexpensive, convenient, and effective way to prepare semiconductor oxide films over conductive substrates. The surface morphology and physical properties of the electrodeposition-derived films is mainly determined by deposition parameters such as applied potential, concentration of electrolyte, bath temperature, and bath pH [2023].

Yao et al. [24] reported the electrochemical deposition of Cu2O microcrystals on a glassy carbon (GC) electrode. When varying the deposition voltage at GC electrode, Cu2O nanocrystalline changed from superoctahedral to octahedron and then to microspheres. Jiang et al. [25] studied electronic structure of Cu2O thin films grown on Cu (110) by X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Combined with XAS and XPS measurements, accurate identification of the various chemical components has been determined.

According to these observations, it can be concluded that the deposition conditions play an important role in the physical properties of Cu2O thin films. And they also explained about the effect of deposition conditions on the microstructure and optical properties of Cu2O films. Recently, the electrodeposited Cu2O films prepared using potentiostatic method and physical properties of the as-deposited Cu2O films have been reported. In this paper, Cu2O thin films were deposited by electrodeposition at different applied potentials. The effect of the applied potential on the morphological, microstructural, and optical properties of the as-deposited Cu2O films has been investigated in detail.


Preparation of Cu2O thin films

The Cu2O thin films were prepared by electrodeposition on Ti sheets. Prior to the deposition, Ti sheets were ultrasonically cleaned in acetone, alcohol, and deionized water, sequentially. Then, they were chemically polished by immersing them in a mixture of HF and HNO3 acids (HF:HNO3:H2O = 1:1:2 in volume) for 20 s, followed by rinsing in deionized water.

Electrodeposition of Cu2O was performed using a three-electrode system, in which a Ti sheet was used as a working electrode. A Pt plate and an Ag/AgCl in saturated potassium chloride aqueous solution were employed as counter and reference electrode. Cu2O films were grown on the surface of Ti sheets at bath temperature of 40°C using a solution consisting of 0.1 M sodium acetate (NaCH3COO) and 0.05 M cupric acetate (Cu(CH3COO)2). Electrodeposition was carried out under potentiostatic condition at different applied potentials (−0.1, −0.3, −0.5, −0.7, and −0.9 V) with respect to the reference electrode. The five samples were denoted as S1, S2, S3, S4, and S5, respectively. Finally, the obtained samples were annealed in vacuum at a temperature of 100°C for 1 h.


The surface morphology of the electrodeposited films was examined by field-emission scanning electron microscope (SEM, Hitachi, S4800, Tokyo, Japan). To determine the phase and crystalline structure of the as-deposited films, X-ray diffraction (XRD, MAC Science, Yokohama, Japan) analysis was carried out with an X-ray diffractometer employing Cu-Kα radiation. The UV-visible (vis) absorption spectra were recorded by a UV–vis spectrometer (Shimadzu, UV-2550, Kyoto, Japan). The FL spectra of the films were examined by a fluorescence spectrometer (Hitachi Corp., FL-4500).

Results and discussion

Structural characterization

Figure 1 illustrates the XRD profiles of the Cu2O films deposited at applied potentials between −0.1 and −0.9 V vs. the reference electrode.
Figure 1

X-ray diffraction patterns for the Cu 2 O films.

Apart from the diffraction peaks corresponding to the Ti sheet, the peaks with 2θ values of 36.28°, 42.12°, and 61.12° corresponding to (111), (200), and (220) crystal planes, respectively, are assigned as the pure Cu2O (JCPDS: 05–0667). When deposition is carried out at −0.5 V, the peak of Cu is observed, suggesting that some metal copper form in the electrodeposition process [26].

Based on Figure 1, it can be noted that the intensity of Cu2O peaks decrease with increasing the deposition potential. Peaks corresponding to the Cu2O disappear when deposited at −0.9 V. This may be due to quicker growth of Cu2O particles and worse crystallization at higher applied potential.

Surface morphology

The SEM micrographs of the Cu2O films deposited at different applied potentials are shown in Figure 2. The morphology of the Cu2O particles changes obviously with increasing the applied potential. The films deposited at −0.1, −0.3, and −0.5 V vs. the reference electrode (Figure 2a,b,c, respectively) are formed by regular, well-faceted, polyhedral crystallites. The films change from octahedral to cubic and then to agglomerate as the applied potential becomes more cathodic.
Figure 2

SEM micrographs of Cu 2 O films. (a) −0.1 V, (b) −0.3 V, (c) −0.5 V, (d) −0.7 V, and (e) −0.9 V.

From Figure 2, it can be observed that the Cu2O thin film deposited at −0.1 V vs. the reference electrode exhibits pyramid shaped structure, as shown in Figure 2a, whereas the film deposited at −0.3 V exhibits cubic structure (Figure 2b). Cuprous oxide (111) crystal plane has the highest density of oxygen atoms, and the growth rate is smaller at lower deposition potential. So morphology of Cu2O films depends on (111) crystal plane, leading crystal surface morphology to pyramid with four facets (Figure 2a). Figure 2c shows co-deposition of agglomerate Cu with cubic structure Cu2O when deposited at −0.5 V, which is in good agreement with the observation confirmed by XRD spectra shown in Figure 1.

Figure 2d,e shows the SEM micrographs of films deposited at −0.7 and −0.9 V vs. the reference electrode, respectively. These films exhibit a granular spherical morphology, and the average diameter of the grains tends to be approximately 50 nm.

Optical properties

Figure 3 illustrates the optical absorption spectra for all the samples of cuprous oxide thin films deposited on Ti sheets at different applied potentials. As can be seen, there is an absorption edge in the range of 500 to 620 nm. Comparing these curves, it can be found that the absorption edges show redshift then blueshift with increasing the applied potential.
Figure 3

UV–vis absorption spectra of Cu 2 O thin films.

The photoabsorption in the visible light range for Cu2O film at −0.1 V vs. the reference electrode with cubic structure was more than 50% stronger than that for Cu2O film with pyramid shaped structure, which can be seen from Figure 2a,b. It can originate from the reason that the cubic structure film has more surfaces to adsorb light, leading to stronger photoabsorption [27].

Cu2O film deposited at −0.5 V vs. the reference electrode with the strongest absorption is due to the resonance absorption of metal copper particles, which can be also confirmed by XRD spectra of Figure 1. The decrease of the absorption coefficient of Cu2O films deposited at −0.7 and −0.9 V may be due to too much nucleation covering the entire Ti sheets. It decreases gaps, and defects of the films then reduce the scattering of light.

The cuprous oxide is a typical direct band gap semiconductor. The absorption coefficient satisfies the equation (ahv)2 = A(hv − E g ) for a direct band gap material [28]. Here, a is the absorption coefficient, A is a constant, hv is the discrete photon energy, and E g is the band gap energy. The band gap E g is obtained by extrapolation of the plot of (ahv)2 vs. hv, and the estimated direct band gaps of Cu2O films are listed in Table 1. Based on the data of Figure 4 and Table 1, it can be found that the band gap of Cu2O films first decreases and then increases with the applied potential which becomes more cathodic. The intercepts to the (ahv)2 vs. hv plot for the samples S1 and S2 give the value of band gap as 1.90 and 1.83 eV, respectively. Due to the presence of metal Cu particles, the absorption edge of the sample S3 is 1.69 eV. Figure 4 shows (ahv)2 vs. hv plot for the samples S4 and S5, and the obtained band gap values are 2.00 and 2.03 eV, respectively. This is also consistent with previous XRD results and coincides with Grez's observation [29].
Table 1

The estimated direct band gaps of Cu 2 O films

Applied potential (V)






Band gap (eV)





Figure 4

Square of the absorption energy as a function of photon energy of Cu 2 O films.

It is well known that FL spectra of semiconductor materials can be introduced to provide some information about the structure of energy band and the crystalline quality. In this work, the excitation wavelength of 400 nm is used as the excitation source with photon of 3.10 eV, which is higher than the band gap of Cu2O. Room temperature FL spectra results for samples deposited at the different applied potentials are individually presented in Figure 5. The FL signals of the samples are quite similar. The primary FL spectral characteristics for all samples include an emission peak centering at about 603 nm (2.06 eV). As the band gap of Cu2O is about 2.0 eV, the emission at 603 nm can be attributed to near band-edge emission from free exciton recombination [30].
Figure 5

FL spectra of Cu 2 O thin films.


In summary, Cu2O thin films were deposited on Ti sheets in a solution consisting of cupric acetate and sodium acetate by electrodeposition method. XRD measurement shows the existence of Cu2O with cubic structure and the peak of Cu only at −0.5 V. SEM images reveal that the applied potential has significant influence on the surface morphology. The morphology of Cu2O films turns octahedral into cubic and agglomerate as the applied potential becomes more cathodic. Band gap values of the films vary from 1.83 to 2.03 eV. The emission at 603 nm (2.06 eV) of FL spectra can be caused by near band-edge emission from free exciton recombination.



This work is supported by the National Natural Science Foundation of China (No. 51072001 and 51272001), National Key Basic Research Program (2013CB632705), the National Science Research Foundation for Scholars Return from Overseas, Ministry of Education, China, and Science Foundation for The Excellent Youth Talents of Chuzhou University (2013RC007). The authors would like to thank Yonglong Zhuang and Zhongqing Lin of the Experimental Technology Center of Anhui University for electron microscope test and discussion.

Authors’ Affiliations

School of Physics and Material Science, Anhui University
School of Mechanical and Electronic Engineering, Chuzhou University


  1. Hiroki N, Tatsuya S, Hiroki H, Chihiro M, Ichiro T, Tohru H, Mitsunobu S: Chemical fabrication of p-type Cu2O transparent thin film using molecular precursor method. Mater Chem Phys 2012, 137: 252–257. 10.1016/j.matchemphys.2012.09.016View Article
  2. Ho JY, Huang MH: Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J Phys Chem C 2009, 113: 14159–14164. 10.1021/jp903928pView Article
  3. Park JC, Kim J, Kwon H, Song H: Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 2009, 21: 803–807. 10.1002/adma.200800596View Article
  4. Sharma P, Sharma SK: Microscopic investigations of Cu2O nanostructures. J Alloy Comp 2013, 557: 152–159.View Article
  5. Miyake M, Chen YC, Braun PV, Wiltzius P: Fabrication of three-dimensional photonic crystals using multibeam interference lithography and electrodeposition. Adv Mater 2009, 21: 3012–3015. 10.1002/adma.200802085View Article
  6. Yu Y, Zhang LY, Wang J, Yang Z, Long MC, Hu NT, Zhang YF: Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation. Nanoscale Res Lett 2012, 7: 347–352. 10.1186/1556-276X-7-347View Article
  7. Yang LX, Luo SL, Li Y, Xiao Y, Kang Q, Cai QY: High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 2010, 44: 7641–7646. 10.1021/es101711kView Article
  8. Shi H, Yu K, Wang Y, Wang QJ, Zhu ZQ: Shape evolution, photoluminescence and degradation properties of novel Cu2O micro/nanostructures. Appl Phys A 2012, 108: 709–717. 10.1007/s00339-012-6954-yView Article
  9. Jiang TF, Xie TF, Yang WS, Chen LP, Fan HM, Wang DJ: Photoelectrochemical and photovoltaic properties of p-n Cu2O homojunction films and their photocatalytic performance. J Phys Chem C 2013, 117: 4619–4624. 10.1021/jp311532sView Article
  10. Chu CL, Lu HC, Lo CY, Lai CY, Wang YH: Physical properties of copper oxide thin films prepared by dc reactive magnetron sputtering under different oxygen partial pressures. Physica B 2009, 404: 4831–4834. 10.1016/j.physb.2009.08.185View Article
  11. Zhu HL, Zhang JY, Li CZ, Pan F, Wang TM, Huang BB: Cu2O thin films deposited by reactive direct current magnetron sputtering. Thin Solid Films 2009, 517: 5700–5704. 10.1016/j.tsf.2009.02.127View Article
  12. Lamberti A, Destro M, Bianco S, Quaglio M, Chiodoni A, Pirri CF, Gerbaldi C: Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation. Electrochim Acta 2012, 86: 323–329.View Article
  13. Hesjedal T: Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl Phys Lett 2011, 98: 133106:133.View Article
  14. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG: Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electr 2009, 13: 1171–1179. 10.1007/s10008-008-0632-1View Article
  15. Pattanasattayavong P, Thomas S, Adamopoulos G, McLachlan MA, Anthopoulos TD: p-channel thin-film transistors based on spray-coated Cu2O films. Appl Phys Lett 2013, 102: 163505. 1–4 1–4 10.1063/1.4803085View Article
  16. Chou SL, Lu L, Wang JZ, Rahman MM, Zhong C, Liu HK: The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery. J Appl Electrochem 2011, 41: 1261–1267. 10.1007/s10800-011-0330-zView Article
  17. Ai ZH, Zhang LZ, Lee SC, Ho W: Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity. J Phys Chem C 2009, 113: 20896–20902. 10.1021/jp9083647View Article
  18. Paracchino A, Brauer JC, Moser JE, Thimsen E, Graetzel M: Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 2012, 116: 7341–7350. 10.1021/jp301176yView Article
  19. Liu YC, Turley HK, Tumbleston JR, Samulski ET, Lopez R: Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells. Appl Phys Lett 2011, 98: 162105. 1–3 1–3 10.1063/1.3579259View Article
  20. Li Q, Xu MM, Fan HQ, Wang HR, Peng BL, Long CB, Zhai YC: Electrical charge conductivity behavior of electrodeposited Cu2O/ZnO heterojunction thin films on PET flexible substrates by impedance spectroscopy analysis. J Mater Sci 2013, 48: 3334–3340. 10.1007/s10853-012-7008-8View Article
  21. Ghadimkhania G, Tacconi NR, Chanmanee W, Janaky C, Rajeshwar K: Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. Chem Commun 2013, 49: 1297–1299. 10.1039/c2cc38068dView Article
  22. Yu XJ, Zhang AM, Zhang J, Zhao J, Yao BH, Liu GJ: Preparation and characterization of Cu2O thin films by electrodeposition. Adv Mater Res 2011, 413: 371–374.View Article
  23. Bijani S, Martıínez L, Gabás M, Dalchiele EA, Ramos-Barrado JR: Low-temperature electrodeposition of Cu2O thin films: modulation of micro-nanostructure by modifying the applied potential and electrolytic bath pH. J Phys Chem C 2009, 113: 19482–19487. 10.1021/jp905952aView Article
  24. Yao HC, Zeng XY, Zhang DJ, Liu L, Yuan BQ: Shape-controlled synthesis of Cu2O microstructures at glassy carbon electrode by electrochemical method for non-enzymatic glucose sensor. Int J Electrochem Sci 2013, 8: 12184–12191.
  25. Jiang P, Prendergast D, Borondics F, Porsgaard S, Giovanetti L, Pach E, Newberg J, Bluhm H, Besenbacher F, Salmeron M: Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using X-ray photoelectron and absorption spectroscopy. J Chem Phys 2013, 138: 024704. 1–6 1–6 10.1063/1.4773583View Article
  26. Zhang L, Wang H: Interior structural tailoring of Cu2O shell-in-shell nanostructures through multistep Ostwald ripening. J Phys Chem C 2011, 115: 18479–18485. 10.1021/jp2059613View Article
  27. Zhao WY, Fu WY, Yang HB, Tian CJ, Li MH, Li YX, Zhang LN, Sui YM, Zhou XM, Chen H, Zou GT: Electrodeposition of Cu2O films and their photoelectrochemical properties. Cryst Eng Comm 2011, 13: 2871–2877. 10.1039/c0ce00829jView Article
  28. Laidoudi S, Bioud AY, Azizi A, Schmerber G, Bartringer J, Barre S, Dinia A: Growth and characterization of electrodeposited Cu2O thin films. Semicond Sci Tech 2013, 28: 115005. 1–7 1–7 10.1088/0268-1242/28/11/115005View Article
  29. Grez P, Herrera F, Riveros G, Ramírez A, Henríquez R, Dalchiele E, Schrebler R: Morphological, structural, and photoelectrochemical characterization of n-type Cu2O thin films obtained by electrodeposition. Phys Status Solidi A 2012, 209: 2470–2475. 10.1002/pssa.201228286View Article
  30. Shinde SL, Nanda KK: Facile synthesis of large area porous Cu2O as super hydrophobic yellow-red phosphors. RSC Adv 2012, 2: 3647–3650. 10.1039/c2ra20066jView Article


© Jiang et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.