Open Access

Hydrogen induced redox mechanism in amorphous carbon resistive random access memory

  • Yi-Jiun Chen1,
  • Hsin-Lu Chen1,
  • Tai-Fa Young1Email author,
  • Ting-Chang Chang2Email author,
  • Tsung-Ming Tsai3,
  • Kuan-Chang Chang3,
  • Rui Zhang4,
  • Kai-Huang Chen5,
  • Jen-Chung Lou4,
  • Tian-Jian Chu3,
  • Jung-Hui Chen6,
  • Ding-Hua Bao7 and
  • Simon M Sze2, 8
Nanoscale Research Letters20149:52

DOI: 10.1186/1556-276X-9-52

Received: 27 November 2013

Accepted: 6 January 2014

Published: 29 January 2014

Abstract

We investigated the bipolar resistive switching characteristics of the resistive random access memory (RRAM) device with amorphous carbon layer. Applying a forming voltage, the amorphous carbon layer was carbonized to form a conjugation double bond conductive filament. We proposed a hydrogen redox model to clarify the resistive switch mechanism of high/low resistance states (HRS/LRS) in carbon RRAM. The electrical conduction mechanism of LRS is attributed to conductive sp2 carbon filament with conjugation double bonds by dehydrogenation, while the electrical conduction of HRS resulted from the formation of insulating sp3-type carbon filament through hydrogenation process.

Keywords

Carbon Hydrogen redox Conjugation double bond RRAM

Background

Recently, portable electronic products which are combined memory circuits [13], display design [4, 5] and IC circuits have popularized considerably in the last few years. To surmount the technical and physical limitation issues of conventional charge-storage-based memories [611], the resistance random access memory (RRAM) is constructed of an insulating layer sandwiched by two electrodes. This structure is a great potential candidate for next-generation nonvolatile memory due to its superior characteristics such as lesser cost, simple structure, high-speed operation, and nondestructive readout [1221].

The carbon-based resistive memory (C-RRAM) has emerged as one of a few candidates with high density and low power. The resistive switching of C-RRAM relies on the formation and rupture of filaments due to redox chemical reaction mechanism, which is similar to most other reported RRAM devices [2243].

In this paper, we investigated the resistive switching characteristics of amorphous carbon films prepared by RF magnetron sputter deposition technique for nonvolatile memory applications. Reliable and reproducible switching phenomena of the amorphous carbon RRAM with Pt/a-C:H/TiN structure were observed. In addition, the resistive switching mechanism of the amorphous carbon RRAM device is discussed and verified by electrical and material analysis.

Methods

The experimental specimens were prepared as follows. The carbon thin film (around 23 nm) was deposited on the TiN/Ti/SiO2/Si substrate by RF magnetron sputtering with a carbon target. After that, the Pt top electrode of 200-nm thickness was deposited on the specimen by DC magnetron sputtering. The photolithography and lift-off technique were used to shape the cells into square pattern with area of 0.36 to 16 μm2. The electrical measurements of devices were performed using Agilent B1500 semiconductor parameter analyzer (Santa Clara, CA, USA). Besides, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were used to analyze the chemical composition and bonding of the amorphous carbon materials, respectively.

Results and discussion

Figure 1 shows the bipolar current–voltage (I-V) characteristics of the carbon memory cell in semi-logarithmic scale under DC voltage sweeping mode at room temperature. After the electroforming process (inset of Figure 1), the resistance switching behavior of the as-fabricated device can be obtained repeatedly, using DC voltage switching with a compliance current of 10 μA. By sweeping the bias from zero to negative value (about -1.5 V), the resistance state is transformed from low resistance states (LRS) to high resistance states (HRS), called as ‘reset process’. Conversely, as the voltage sweeps from zero to a positive value (about 1.5 V), the resistance state is turned back to LRS, called as ‘set process’. During set process, a compliance current of 10 mA is applied to prevent permanent breakdown.
https://static-content.springer.com/image/art%3A10.1186%2F1556-276X-9-52/MediaObjects/11671_2013_Article_1848_Fig1_HTML.jpg
Figure 1

Current–voltage sweeps of Pt/a-C:H/TiN memory device.

To further evaluate the memory performance of amorphous carbon RRAM, the endurance and retention tests were shown in Figure 2. The resistance values of reliability and sizing effect measurement were obtained by a read voltage of 0.2 V. The device exhibits stable HRS and LRS even after more than 107 sweeping cycles (Figure 2a), which demonstrates its acceptable switching endurance capability. The retention characteristics of HRS and LRS at T = 85°C are shown in Figure 2b. No significant degradation of resistance in HRS and LRS was observed. It indicates that the device has good reliability for nonvolatile memory applications. Figure 2c reveals the resistance of LRS and HRS states with various sizes of via hole, which is independent with the electrode area of the device. According to the proposed model by Sawa [44], the resistive switching behavior in carbon RRAM is attributed to filament-type RRAM.
https://static-content.springer.com/image/art%3A10.1186%2F1556-276X-9-52/MediaObjects/11671_2013_Article_1848_Fig2_HTML.jpg
Figure 2

Endurance (a), retention properties (b), and sizing effect measurement (c) of Pt/a-C:H/TiN memory device.

To investigate the interesting phenomena, we utilized the material spectrum analyses to find out the reason of working current reduction and better stability. The sputtered carbon film was analyzed by Raman spectroscopy and the spectra revealed in Figure 3a. The broaden peak from 1,100 to 1,700 cm-1 demonstrates the existence of amorphous carbon structure [45].
https://static-content.springer.com/image/art%3A10.1186%2F1556-276X-9-52/MediaObjects/11671_2013_Article_1848_Fig3_HTML.jpg
Figure 3

Raman spectra of C sp 2 and C sp 3 in amorphous carbon film (a); FTIR spectrum of amorphous carbon film (b).

In order to further testify the existence of the carbon layer and find its chemical bonding type, FTIR was used to analyze the sputtered carbon thin film. C-H stretch peak can be observed at the wave number of 2,800 to 3,000 cm-1, as shown in the FTIR spectra of Figure 3b.

To clarify the current transportation mechanism, the current vs. voltage (I-V) is presented in Figure 4. The LRS shows symmetric I-V curve at positive and negative electrical field. The electron transport exhibits Poole-Frenkel and Hopping conduction at middle and high voltage. However, the I-V curve is asymmetric in HRS, but the current transportation mechanism is Schottky emission and Hopping at middle and high voltage. The resistive switching mechanism of LRS and HRS is given in detail as follows.
https://static-content.springer.com/image/art%3A10.1186%2F1556-276X-9-52/MediaObjects/11671_2013_Article_1848_Fig4_HTML.jpg
Figure 4

I-V curve fitting of Pt/a-C:H/TiN memory device with various carrier transport mechanisms.

On the basis of the electrical and material analyses, we proposed a reaction model to explain the transfer of carrier conduction mechanism of the amorphous carbon RRAM as shown in Figure 5. The conductive filament will be formed after the forming process, which is attributed to the connection between sp2 carbon fractions in the amorphous carbon layer [46]. Due to the current compliance, there is remaining amorphous carbon between conductive sp2 regions, as shown in left insert of Figure 5. Because the current pass through the boundaries of sp2 regions, the current fitting is dominated by Poole-Frenkel conduction in LRS. As higher voltage was applied, the significant barrier lowering caused the conduction dominated by hopping conduction through conjugation double bonds of sp2 carbon filament. When the bottom TiN electrode is applied with a negative bias to perform a reset process, hydrogen atoms were pulled from the Pt electrode and absorbed by double bonds of sp2 carbon, namely hydrogenation process. The hydrogenation reaction will transfer the conductive sp2 carbon filament into insulated sp3 carbon filament. As shown in the right insert of Figure 5, the region of filament near Pt electrode forms insulated sp3 carbon dominated, which leads to the current conduction exhibit Schottky conduction in HRS. The Hopping conduction is attributed to significant barrier lowering as the higher voltage was applied. Contrariwise, the hydrogen atoms were repelled to Pt electrode to form sp2 carbon filament during set process, called as dehydration process. Based on the hydrogen redox model, a repeatable switching behavior can be obtained in C-RRAM device.
https://static-content.springer.com/image/art%3A10.1186%2F1556-276X-9-52/MediaObjects/11671_2013_Article_1848_Fig5_HTML.jpg
Figure 5

Hydrogen redox model of Pt/a-C:H/TiN memory device in LRS and HRS states.

Conclusion

In conclusion, the amorphous carbon RRAM has been fabricated to investigate the resistive switching characteristics. The device has good resistive switching properties due to hydrogenation and dehydrogenation of H atoms in carbon RRAM. The material and electrical analyses give convincing evidence of hydrogen redox induced resistance switching in amorphous carbon RRAM. The current conduction of LRS was contributed to formation of conjugation double bonds in the carbon layer after dehydrogenation. Moreover, the current conduction of HRS was dominated by insulating sp3 carbon after hydrogenation at a reverse electrical filed.

Declarations

Acknowledgements

This work was performed at National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung-Pingtung area and supported by the National Science Council of the Republic of China under contract nos. NSC 102-2120-M-110-001 and NSC 101-2221-E-044-MY3.

Authors’ Affiliations

(1)
Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University
(2)
Department of Physics, National Sun Yat-Sen University
(3)
Department of Materials and Optoelectronic Science, National Sun Yat-Sen University
(4)
School of Software and Microelectronics, Peking University
(5)
Department of Electronics Engineering and Computer Science, Tung-Fang Design University
(6)
Department of Chemistry, National Kaohsiung Normal University
(7)
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University
(8)
Department of Electrical Engineering, Stanford University

References

  1. Guan WH, Long SB, Jia R, Liu M: Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Appl Phys Lett 2007, 91: 062111. 10.1063/1.2760156View ArticleGoogle Scholar
  2. Liu Q, Guan WH, Long SB, Jia R, Liu M, Chen JN: Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl Phys Lett 2008, 92: 012117. 10.1063/1.2832660View ArticleGoogle Scholar
  3. Chang TC, Jian FY, Chen SC, Tsai YT: Developments in nanocrystal memory. Mater Today 2011, 14: 608–615. 10.1016/S1369-7021(11)70302-9View ArticleGoogle Scholar
  4. Tsai CT, Chang TC, Chen SC, Lo IK, Tsao SW, Hung MC, Chang JJ, Wu CY, Huang CY: Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor. Appl Phys Lett 2010, 96: 242105. 10.1063/1.3453870View ArticleGoogle Scholar
  5. Chen TC, Chang TC, Tsai CT, Hsieh TY, Chen SC, Lin CS, Hung MC, Tu CH, Chang JJ, Chen PL: Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress. Appl Phys Lett 2010, 97: 112104. 10.1063/1.3481676View ArticleGoogle Scholar
  6. Liu J, Wang Q, Long SB, Zhang MH, Liu M: A metal/Al2O3/ZrO2/SiO2/Si (MAZOS) structure for high-performance non-volatile memory application. Semicond Sci Technol 2010, 25: 055013. 10.1088/0268-1242/25/5/055013View ArticleGoogle Scholar
  7. Jiang DD, Zhang MH, Huo ZL, Wang Q, Liu J, Yu ZA, Yang XN, Wang Y, Zhang B, Chen JN, Liu M: A study of cycling induced degradation mechanisms in Si nanocrystal memory devices. Nanotechnology 2011, 22: 254009. 10.1088/0957-4484/22/25/254009View ArticleGoogle Scholar
  8. Syu YE, Chang TC, Tsai TM, Hung YC, Chang KC, Tsai MJ, Kao MJ, Sze SM: Redox reaction switching mechanism in RRAM device with Pt/CoSiOX/TiN structure. IEEE Electron Device Lett 2011, 32: 545–547.View ArticleGoogle Scholar
  9. Chen MC, Chang TC, Tsai CT, Huang SY, Chen SC, Hu CW, Sze SM, Tsai MJ: Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films. Appl Phys Lett 2010, 96: 262110. 10.1063/1.3456379View ArticleGoogle Scholar
  10. Zhu CX, Huo ZL, Xu ZG, Zhang MH, Wang Q, Liu J, Long SB, Liu M: Performance enhancement of multilevel cell nonvolatile memory by using a bandgap engineered high-κ trapping layer. Appl Phys Lett 2010, 97: 253503. 10.1063/1.3531559View ArticleGoogle Scholar
  11. Zhu CX, Xu ZG, Huo ZL, Yang R, Zheng ZW, Cui YX, Liu J, Wang YM, Shi DX, Zhang GY, Li FH, Liu M: Investigation on interface related charge trap and loss characteristics of high-k based trapping structures by electrostatic force microscopy. Appl Phys Lett 2011, 99: 223504. 10.1063/1.3664222View ArticleGoogle Scholar
  12. Tsai TM, Chang KC, Chang TC, Syu YE, Chuang SL, Chang GW, Liu GR, Chen MC, Huang HC, Liu SK, Tai YH, Gan DS, Yang YL, Young TF, Tseng BH, Chen KH, Tsai MJ, Ye C, Wang H, Sze SM: Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications. IEEE Electron Device Lett 2012, 33: 1696–1698.View ArticleGoogle Scholar
  13. Fu D, Xie D, Feng TT, Zhang CH, Niu JB, Qian H, Liu LT: Unipolar resistive switching properties of diamondlike carbon-based RRAM devices. IEEE Electron Device Lett 2011, 32: 803–805.View ArticleGoogle Scholar
  14. Zhuge F, Dai W, He CL, Wang AY, Liu YW, Li M, Wu YH, Cui P, Li RW: Nonvolatile resistive switching memory based on amorphous carbon. Appl Phys Lett 2010, 96: 163505. 10.1063/1.3406121View ArticleGoogle Scholar
  15. Peng PG, Xie D, Yang Y, Zhou CJ, Ma S, Feng TT, Tian H, Ren TL: Bipolar and unipolar resistive switching effects in an Al/DLC/W structure. J Phys D Appl Phys 2012, 45: 365103. 10.1088/0022-3727/45/36/365103View ArticleGoogle Scholar
  16. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM: Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289: 94–97. 10.1126/science.289.5476.94View ArticleGoogle Scholar
  17. Wang Y, Liu Q, Long SB, Wang W, Wang Q, Zhang MH, Zhang S, Li YT, Zuo QY, Yang JH, Liu M: Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 2010, 21: 045202. 10.1088/0957-4484/21/4/045202View ArticleGoogle Scholar
  18. Kuang YB, Huang R, Ding W, Zhang LJ, Wang YG: Flexible single-component-polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications. IEEE Electron Device Lett 2010, 31: 758–760.View ArticleGoogle Scholar
  19. Russo U, Ielmini D, Cagli C, Lacaita AL: Filament conduction and reset mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Trans Electron Devices 2009, 56: 186–192.View ArticleGoogle Scholar
  20. Standley B, Bao WZ, Zhang H, Bruck J, Lau CN, Bockrath M: Graphene-based atomic-scale switches. Nano Lett 2008, 8: 3345–3349. 10.1021/nl801774aView ArticleGoogle Scholar
  21. Li YT, Long SB, Zhang MH, Liu Q, Zhang S, Wang Y, Zuo QY, Liu S, Liu M: Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory applications. IEEE Electron Device Lett 2010, 31: 117–119.View ArticleGoogle Scholar
  22. Sebastian A, Pauza A, Rossel C, Shelby RM, Rodríguez AF, Pozidis H, Eleftheriou E: Resistance switching at the nanometre scale in amorphous carbon. New J Phys 2011, 13: 013020. 10.1088/1367-2630/13/1/013020View ArticleGoogle Scholar
  23. Chang KC, Tsai TM, Zhang R, Chang TC, Chen KH, Chen JH, Young TF, Lou JC, Chu TJ, Shih CC, Pan JH, Su YT, Syu YE, Tung CW, Chen MC, Wu JJ, Hu Y, Sze SM: Electrical conduction mechanism of Zn:SiOx resistance random access memory with supercritical CO2 fluid process. Appl Phys Lett 2013, 103: 083509. 10.1063/1.4819162View ArticleGoogle Scholar
  24. Chang KC, Zhang R, Chang TC, Tsai TM, Lou JC, Chen JH, Young TF, Chen MC, Yang YL, Pan YC, Chang GW, Chu TJ, Shih CC, Chen JY, Pan CH, Su YT, Syu YE, Tai YH, Sze SM: Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices. IEEE Electron Device Lett 2013, 34: 677–679.View ArticleGoogle Scholar
  25. Zhang R, Chang KC, Chang TC, Tsai TM, Chen KH, Lou JC, Chen JH, Young TF, Shih CC, Yang YL, Pan YC, Chu TJ, Huang SY, Pan CH, Su YT, Syu YE, Sze SM: High performance of graphene oxide-doped silicon oxide-based resistance random access memory. Nanoscale Res Lett 2013, 8: 497. 10.1186/1556-276X-8-497View ArticleGoogle Scholar
  26. Tsai TM, Chang KC, Zhang R, Chang TC, Lou JC, Chen JH, Young TF, Tseng BH, Shih CC, Pan YC, Chen MC, Pan JH, Syu YE, Sze SM: Performance and characteristics of double layer porous silicon oxide resistance random access memory. Appl Phys Lett 2013, 102: 253509. 10.1063/1.4812474View ArticleGoogle Scholar
  27. Chang KC, Pan CH, Chang TC, Tsai TM, Zhang R, Lou JC, Young TF, Chen JH, Shih CC, Chu TJ, Chen JY, Su YT, Jiang JP, Chen KH, Huang HC, Syu YE, Gan DS, Sze SM: Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO2 fluid treatment. IEEE Electron Device Lett 2013, 34: 617–619.View ArticleGoogle Scholar
  28. Chang KC, Tsai TM, Chang TC, Wu HH, Chen KH, Chen JH, Young TF, Chu TJ, Chen JY, Pan CH, Su YT, Syu YE, Tung CW, Chang GW, Chen MC, Huang HC, Tai YH, Gan DS, Wu JJ, Hu Y, Sze SM: Low temperature improvement method on Zn:SiOx resistive random access memory devices. IEEE Electron Device Lett 2013, 34: 511–513.View ArticleGoogle Scholar
  29. Chang KC, Tsai TM, Chang TC, Wu HH, Chen JH, Syu YE, Chang GW, Chu TJ, Liu GR, Su YT, Chen MC, Pan JH, Chen JY, Tung CW, Huang HC, Tai YH, Gan DS, Sze SM: Characteristics and mechanisms of silicon-oxide-based resistance random access memory. IEEE Electron Device Lett 2013, 34: 399–401.View ArticleGoogle Scholar
  30. Tsai TM, Chang KC, Chang TC, Chang GW, Syu YE, Su YT, Liu GR, Liao KH, Chen MC, Huang HC, Tai YH, Gan DS, Ye C, Wang H, Sze SM: Origin of hopping conduction in Sn-doped silicon oxide RRAM with supercritical CO2 fluid treatment. IEEE Electron Device Lett 2012, 33: 1693–1695.View ArticleGoogle Scholar
  31. Tsai TM, Chang KC, Chang TC, Syu YE, Liao KH, Tseng BH, Sze SM: Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment. Appl Phys Lett 2012, 101: 112906. 10.1063/1.4750235View ArticleGoogle Scholar
  32. Chang KC, Huang JW, Chang TC, Tsai TM, Chen KH, Young TF, Chen JH, Zhang R, Lou JC, Huang SY, Pan YC, Huang HC, Syu YE, Gan DS, Bao DH, Sze SM: Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer. Nanoscale Res Lett 2013, 8: 523. 10.1186/1556-276X-8-523View ArticleGoogle Scholar
  33. Chang KC, Tsai TM, Chang TC, Syu YE, Chuang SL, Li CH, Gan DS, Sze SM: The effect of silicon oxide based RRAM with tin doping. Electrochem Solid-State Lett 2012, 15: H65-H68. 10.1149/2.013203eslView ArticleGoogle Scholar
  34. Chang KC, Tsai TM, Chang TC, Syu YE, Wang CC, Chuang SL, Li CH, Gan DS, Sze SM: Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment. Appl Phys Lett 2011, 99: 263501. 10.1063/1.3671991View ArticleGoogle Scholar
  35. Syu YE, Chang TC, Tsai TM, Chang GW, Chang KC, Lou JH, Tai YH, Tsai MJ, Wang YL, Sze SM: Asymmetric carrier conduction mechanism by tip electric field in WSiOX resistance switching device. IEEE Electron Device Lett 2012, 33(3):342–344.View ArticleGoogle Scholar
  36. Long SB, Perniola L, Cagli C, Buckley J, Lian XJ, Miranda E, Pan F, Liu M, Sune J: Voltage and power-controlled regimes in the progressive uni-polar RESET transition of HfO2-based RRAM. Sci Rep 2013, 3: 2929.Google Scholar
  37. Syu YE, Chang TC, Lou JH, Tsai TM, Chang KC, Tsai MJ, Wang YL, Liu M, Sze SM: Atomic-level quantized reaction of HfOx memristor. Appl Phys Lett 2013, 102: 172903. 10.1063/1.4802821View ArticleGoogle Scholar
  38. Long SB, Lian XJ, Cagli C, Perniola L, Miranda E, Liu M, Sune J: A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Device Lett 2013, 34(8):999–1001.View ArticleGoogle Scholar
  39. Chu TJ, Chang TC, Tsai TM, Wu HH, Chen JH, Chang KC, Young TF, Chen KH, Syu YE, Chang GW, Chang YF, Chen MC, Lou JH, Pan JH, Chen JY, Tai YH, Ye C, Wang H, Sze SM: Charge quantity influence on resistance switching characteristic during forming process. IEEE Electron Device Lett 2013, 34(4):502–504.View ArticleGoogle Scholar
  40. Long SB, Lian XJ, Cagli C, Cartoixa X, Rurali R, Miranda E, Jimenez D, Perniola L, Liu M, Sune J: Quantum-size effects in hafnium-oxide resistive switching. Appl Phys Lett 2013, 102(18):183505. 10.1063/1.4802265View ArticleGoogle Scholar
  41. Su YT, Chang KC, Chang TC, Tsai TM, Zhang R, Lou JC, Chen JH, Young TF, Chen KH, Tseng BH, Shih CC, Yang YL, Chen MC, Chu TJ, Pan CH, Syu YE, Sze SM: Characteristics of hafnium oxide resistance random access memory with different setting compliance current. Appl Phys Lett 2013, 103(16):163502. 10.1063/1.4825104View ArticleGoogle Scholar
  42. Zhang R, Tsai TM, Chang TC, Chang KC, Chen KH, Lou JC, Young TF, Chen JH, Huang SY, Chen MC, Shih CC, Chen HL, Pan JH, Tung CW, Syu YE, Sze SM: Mechanism of power consumption inhibitive multi-layer Zn:SiO2/SiO2 structure resistance random access memory. J. Appl. Phys. 2013, 114: 234501. 10.1063/1.4843695View ArticleGoogle Scholar
  43. Chang KC, Chen JH, Tsai TM, Chang TC, Huang SY, Zhang R, Chen KH, Syu YE, Chang GW, Chu TJ, Liu GR, Su YT, Chen MC, Pan JH, Liao KH, Tai YH, Young TF, Sze SM, Ai CF, Wang MC, Huang JW: Improvement mechanism of resistance random access memory with supercritical CO2 fluid treatment. J. of Supercritical Fluids 2014, 85: 183–189.View ArticleGoogle Scholar
  44. Sawa A: Resistive switching in transition metal oxides. Mater Today 2008, 11: 28–36.View ArticleGoogle Scholar
  45. Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP: Raman spectroscopy on amorphous carbon films. J Appl Phys 1996, 80: 440–447. 10.1063/1.362745View ArticleGoogle Scholar
  46. Evtukh A, Litovchenko V, Semenenko M, Yilmazoglu O, Mutamba K, Hartnagel HL, Pavlidis D: Formation of conducting nanochannels in diamond-like carbon films. Semicond Sci Technol 2006, 21: 1326–1330. 10.1088/0268-1242/21/9/018View ArticleGoogle Scholar

Copyright

© Chen et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.