Skip to main content

Aggregate structure of hydroxyproline-rich glycoprotein (HRGP) and HRGP assisted dispersion of carbon nanotubes


Hydroxyproline-rich glycoproteins (HRGP) comprise a super-family of extracellular structural glycoproteins whose precise roles in plant cell wall assembly and functioning remain to be elucidated. However, their extended structure and repetitive block co-polymer character of HRGPs may mediate their self-assembly as wall scaffolds by like-with-like alignment of their hydrophobic peptide and hydrophilic glycopeptide modules. Intermolecular crosslinking further stabilizes the scaffold. Thus the design of HRGP-based scaffolds may have practical applications in bionanotechnology and medicine. As a first step, we have used single-molecule or single-aggregate atomic force microscopy (AFM) to visualize the structure of YK20, an amphiphilic HRGP comprised entirely of 20 tandem repeats of: Ser-Hyp4-Ser-Hyp-Ser-Hyp4-Tyr-Tyr-Tyr-Lys. YK20 formed tightly aggregated coils at low ionic strength, but networks of entangled chains with a porosity of ~0.5–3 μm at higher ionic strength. As a second step we have begun to design HRGP-carbon nanotube composites. Single-walled carbon nanotubes (SWNTs) can be considered as seamless cylinders rolled up from graphene sheets. These unique all-carbon structures have extraordinary aromatic and hydrophobic properties and form aggregated bundles due to strong inter-tube van der Waals interactions. Sonicating aggregated SWNT bundles with aqueous YK20 solubilized them presumably by interaction with the repetitive, hydrophobic, Tyr-rich peptide modules of YK20 with retention of the extended polyproline-II character. This may allow YK20 to form extended structures that could potentially be used as scaffolds for site-directed assembly of nanomaterials.



  1. 1.

    Kieliszewski MJ: Phytochemistry. 2001,57(3):319–323. COI number [1:CAS:528:DC%2BD3MXjtFCnu7c%3D] 10.1016/S0031-9422(01)00029-2

    Article  Google Scholar 

  2. 2.

    Kieliszewski MJ, Shpak E: Cell. Mol. Life Sci.. 2001,58(10):1386–1398. COI number [1:CAS:528:DC%2BD3MXnslKjsL4%3D] 10.1007/PL00000783

    Article  Google Scholar 

  3. 3.

    Shpak E, Barbar E, Leykam JF, Kieliszewski MJ: J Biol Chem. 2001,276(14):11272–11278. COI number [1:CAS:528:DC%2BD3MXjvFGjsbo%3D] 10.1074/jbc.M011323200

    Article  Google Scholar 

  4. 4.

    Shpak E, Leykam JF, Kieliszewski MJ: Proc. Nat. Acad. Sci. USA. 1999,96(26):14736–14741. COI number [1:CAS:528:DC%2BD3cXhtFahsA%3D%3D] 10.1073/pnas.96.26.14736

    Article  Google Scholar 

  5. 5.

    Held MA, Tan L, Kamyab A, Hare M, Shpak E, Kieliszewski MJ: J. Biol. Chem.. 2004,279(53):55474–55482. COI number [1:CAS:528:DC%2BD2cXhtFeis7vE] 10.1074/jbc.M408396200

    Article  Google Scholar 

  6. 6.

    Bustamante C, Rivetti C, Keller DJ: Curr. Opin. Struct. Biol.. 1997,7(5):709–716. COI number [1:CAS:528:DyaK2sXmvVGnu70%3D] 10.1016/S0959-440X(97)80082-6

    Article  Google Scholar 

  7. 7.

    Hansma HG, Kasuya K, Oroudjev E: Curr. Opin. Struct. Biol.. 2004,14(3):380–385. COI number [1:CAS:528:DC%2BD2cXkvV2ntrs%3D] 10.1016/

    Article  Google Scholar 

  8. 8.

    Hansma HG, Pietrasanta LI, Auerbach ID, Sorenson C, Golan R, Holden PA: J. Biomater. Sci. Polym. Ed.. 2000,11(7):675–683. COI number [1:CAS:528:DC%2BD3cXmvFKhu78%3D] 10.1163/156856200743940

    Article  Google Scholar 

  9. 9.

    Chen LW, Haushalter KA, Lieber CM, Verdine GL: Chem. Biol.. 2002,9(3):345–350. COI number [1:CAS:528:DC%2BD38XitlGgt7k%3D] 10.1016/S1074-5521(02)00120-5

    Article  Google Scholar 

  10. 10.

    Bustamante C, Rivetti C: Annu. Rev. Biophys. Biomol. Struct.. 1996, 25: 395–429. COI number [1:CAS:528:DyaK28XjslyisL4%3D]

    Article  Google Scholar 

  11. 11.

    Hafner JH, Cheung C, Woolley AT, Lieber CM: Prog. Biophys. Mol. Biol.. 2001,77(1):73–110. COI number [1:CAS:528:DC%2BD3MXltlKksrw%3D] 10.1016/S0079-6107(01)00011-6

    Article  Google Scholar 

  12. 12.

    Woolley AT, Guillemette C, Cheung CL, Housman DE, Lieber CM: Nat. Biotechnol.. 2000,18(7):760–763. COI number [1:CAS:528:DC%2BD3cXltFCmsr0%3D] 10.1038/77332

    Article  Google Scholar 

  13. 13.

    Dougherty DA: Science. 1996,271(5246):163–168. COI number [1:CAS:528:DyaK28XktFOlsw%3D%3D] 10.1126/science.271.5246.163

    Article  Google Scholar 

  14. 14.

    Schmitt JD, Sharples CGV, Caldwell WS: J. Med. Chem.. 1999,42(16):3066–3074. COI number [1:CAS:528:DyaK1MXksFGhsrg%3D] 10.1021/jm990093z

    Article  Google Scholar 

  15. 15.

    Odom TW, Huang JL, Kim P, Lieber CM: J. Phys. Chem. B. 2000,104(13):2794–2809. COI number [1:CAS:528:DC%2BD3cXhtVCktbc%3D] 10.1021/jp993592k

    Article  Google Scholar 

  16. 16.

    Saito R, Dresselhaus G, Dresselhaus MS: Physical Properties of Carbon Nanotubes. Imperial College Press, London; 1998.

    Google Scholar 

  17. 17.

    Avouris P: Acc. Chem. Res.. 2002,35(12):1026–1034. COI number [1:CAS:528:DC%2BD38Xls1GgurY%3D] 10.1021/ar010152e

    Article  Google Scholar 

  18. 18.

    Baughman RH, Zakhidov AA, de Heer WA: Science. 2002,297(5582):787–792. COI number [1:CAS:528:DC%2BD38XlvVyhsrw%3D] 10.1126/science.1060928

    Article  Google Scholar 

  19. 19.

    Ouyang M, Huang JL, Lieber CM: Acc. Chem. Res.. 2002,35(12):1018–1025. COI number [1:CAS:528:DC%2BD38XmtVymu74%3D] 10.1021/ar0101685

    Article  Google Scholar 

  20. 20.

    Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG: Nat. Mater.. 2003,2(5):338–342. COI number [1:CAS:528:DC%2BD3sXjtlalur4%3D] 10.1038/nmat877

    Article  Google Scholar 

  21. 21.

    Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA: Journal of the American Chemical Society. 2005,127(10):3463–3472. COI number [1:CAS:528:DC%2BD2MXhsFCguro%3D] 10.1021/ja045670+

    Article  Google Scholar 

  22. 22.

    Dieckmann GR, Dalton AB, Johnson PA, Razal J, Chen J, Giordano GM, Munoz E, Musselman IH, Baughman RH, Draper RK: J. Am. Chem. Soc.. 2003,125(7):1770–1777. COI number [1:CAS:528:DC%2BD3sXmtVSnug%3D%3D] COI number [1:CAS:528:DC%2BD3sXmtVSnug%3D%3D] 10.1021/ja029084x

    Article  Google Scholar 

  23. 23.

    D. Wang, W.X. Ji, Z.C. Li, L.W. Chen, J. Am. Chem. Soc. ASAP article (2006)

  24. 24.

    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma JP, Hauge RH, Weisman RB, Smalley RE: Science. 2002,297(5581):593–596. COI number [1:CAS:528:DC%2BD38XlslWrsrY%3D] 10.1126/science.1072631

    Article  Google Scholar 

  25. 25.

    Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C: Science. 2003,300(5620):775–778. COI number [1:CAS:528:DC%2BD3sXjtlSkt78%3D] 10.1126/science.1080848

    Article  Google Scholar 

  26. 26.

    Zheng M, Jagota A, Strano MS, Santos AP, Barone P, S. G. Chou, B.A. Diner, Dresselhaus MS, McLean RS, Onoa GB, Samsonidze GG, Semke ED, Usrey M, Walls DJ: Science. 2003,302(5650):1545–1548. COI number [1:CAS:528:DC%2BD3sXpt1Sms7c%3D] 10.1126/science.1091911

    Article  Google Scholar 

Download references


B. W. thanks the Ohio Univeristy PACE (Program to Aid Career Exploration) for financial support. This project was supported by grants from the Ohio University NanobioTechnology Initiative (NBTI), the Herman Frasch Foundation (526-HF02), and the United States Department of Agriculture (2004–34490–14579).

Author information



Corresponding author

Correspondence to Liwei Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wegenhart, B., Tan, L., Held, M. et al. Aggregate structure of hydroxyproline-rich glycoprotein (HRGP) and HRGP assisted dispersion of carbon nanotubes. Nanoscale Res Lett 1, 154 (2006).

Download citation


  • Hydroxyproline-rich glycoprotein
  • Carbon nanotube
  • Nano assembly