Skip to main content

Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy

Abstract

One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.

[167]

References

  1. 1.

    Reed MA, et al.: Phys. Rev. Lett.. 1988, 60: 535. COI number [1:CAS:528:DyaL1cXitFSnsLY%3D] 10.1103/PhysRevLett.60.535

    Article  Google Scholar 

  2. 2.

    Ashoori RC, et al.: Phys. Rev. Lett.. 1992, 68: 3088. COI number [1:CAS:528:DyaK38XktFynt7s%3D] 10.1103/PhysRevLett.68.3088

    Article  Google Scholar 

  3. 3.

    Bimberg D, Grundmann M, Ledetsov NN: Quantum Dot Heterostructures. Wiley, Chichester; 1998.

    Google Scholar 

  4. 4.

    Chu L, et al.: Appl. Phys. Lett.. 1999, 75: 3599. COI number [1:CAS:528:DyaK1MXnsFyrsLY%3D] 10.1063/1.125400

    Article  Google Scholar 

  5. 5.

    Muto S: Jpn. J. Appl. Phys.. 1995, 34: 210. 10.1143/JJAP.34.L210

    Article  Google Scholar 

  6. 6.

    Sugiyama Y, et al.: Physica E. 2000, 7: 503. COI number [1:CAS:528:DC%2BD3cXktVaku78%3D] 10.1016/S1386-9477(99)00366-5

    Article  Google Scholar 

  7. 7.

    Henini M, et al.: Microelectron. J.. 1997, 28: 933. 10.1016/S0026-2692(96)00132-2

    Article  Google Scholar 

  8. 8.

    Kitamura N, et al.: Appl. Phys. Lett.. 1995, 66: 3663. COI number [1:CAS:528:DyaK2MXmsFSks7g%3D] 10.1063/1.114133

    Article  Google Scholar 

  9. 9.

    Miu DSL, et al.: Appl. Phys. Lett.. 1995, 66: 1620. 10.1063/1.113871

    Article  Google Scholar 

  10. 10.

    Jeppesen S, et al.: Appl. Phys. Lett.. 1996, 68: 2228. COI number [1:CAS:528:DyaK28Xitlyhtrs%3D] 10.1063/1.115867

    Article  Google Scholar 

  11. 11.

    Sugiyama Y, et al.: Jpn. J. Appl. Phys.. 1996, 35: 1320. COI number [1:CAS:528:DyaK28XisFSqurs%3D] 10.1143/JJAP.35.1320

    Article  Google Scholar 

  12. 12.

    Solomon GS, et al.: Phys. Rev. Lett.. 1996, 76: 952. COI number [1:CAS:528:DyaK28Xotl2htw%3D%3D] 10.1103/PhysRevLett.76.952

    Article  Google Scholar 

  13. 13.

    Notzel R, et al.: Jpn. J. Appl. Phys. Part 2. 1994, 33: L275. COI number [1:CAS:528:DyaK2cXivVGgtb8%3D] 10.1143/JJAP.33.L275

    Article  Google Scholar 

  14. 14.

    Notzel R, et al.: Nature (London). 1994, 369: 131. 10.1038/369131a0

    Article  Google Scholar 

  15. 15.

    Notzel R, et al.: Appl. Phys. Lett.. 1994, 65: 457. 10.1063/1.113021

    Article  Google Scholar 

  16. 16.

    Nishi K, et al.: J. Appl. Phys.. 1996, 80: 3466. COI number [1:CAS:528:DyaK28XlslWht7g%3D] 10.1063/1.363216

    Article  Google Scholar 

  17. 17.

    Lubyshev DI, et al.: J. Vac. Sci. Tech. B. 1996, 14: 2212. COI number [1:CAS:528:DyaK28XktVCjtLo%3D] 10.1116/1.588902

    Article  Google Scholar 

  18. 18.

    Reaves CM, et al.: Appl. Phys. Lett.. 1996, 69: 3878. COI number [1:CAS:528:DyaK28XnsF2hsrk%3D] 10.1063/1.117135

    Article  Google Scholar 

  19. 19.

    Henini M, et al.: Phys. Rev. B. 1998, 57: R6815. COI number [1:CAS:528:DyaK1cXhvVeisrw%3D] 10.1103/PhysRevB.57.R6815

    Article  Google Scholar 

  20. 20.

    Nishi K, et al.: Appl. Phys. Lett.. 1997, 70: 3579. COI number [1:CAS:528:DyaK2sXkt1Grs7k%3D] 10.1063/1.119239

    Article  Google Scholar 

  21. 21.

    Moison JM, et al.: Appl. Phys. Lett.. 1994, 64: 196. COI number [1:CAS:528:DyaK2cXitVGksb0%3D] 10.1063/1.111502

    Article  Google Scholar 

  22. 22.

    Zou J, et al.: Phys. Rev. B. 1999, 59: 12273. 10.1103/PhysRevB.59.12279

    Article  Google Scholar 

  23. 23.

    Ruvimov S, et al.: Phys. Rev. Lett.. 2000, 84: 334. 10.1103/PhysRevLett.84.334

    Article  Google Scholar 

  24. 24.

    Liu N, et al.: Phys. Rev. Lett.. 2000, 84: 334. COI number [1:CAS:528:DC%2BD3cXisFWhsg%3D%3D] 10.1103/PhysRevLett.84.334

    Article  Google Scholar 

  25. 25.

    Yang W, et al.: Phys. Rev. B. 2000, 61: 2784. COI number [1:CAS:528:DC%2BD3cXns1Sltw%3D%3D] 10.1103/PhysRevB.61.2784

    Article  Google Scholar 

  26. 26.

    Garcıa JM, et al.: Appl. Phys. Lett.. 1997, 71: 2014. 10.1063/1.119772

    Article  Google Scholar 

  27. 27.

    Takehana K, et al.: J. Cryst. Growth. 2003, 251: 155. COI number [1:CAS:528:DC%2BD3sXitlWmu7k%3D] 10.1016/S0022-0248(02)02407-7

    Article  Google Scholar 

  28. 28.

    Kamiya I, et al.: J. Crystal Growth. 1999, 201/202: 1146. COI number [1:CAS:528:DyaK1MXivF2qsb8%3D] 10.1016/S0022-0248(99)00005-6

    Article  Google Scholar 

  29. 29.

    Patane A, et al.: Superlattices Microstruct.. 1999,25(1/2):113. COI number [1:CAS:528:DyaK1MXhtlequ7g%3D] 10.1006/spmi.1998.0622

    Article  Google Scholar 

  30. 30.

    Kawabe M, et al.: Jap. J. Appl. Phys.. 1997, 36: 4078. COI number [1:CAS:528:DyaK2sXkvFGgsL4%3D] 10.1143/JJAP.36.4078

    Article  Google Scholar 

  31. 31.

    Henini M, et al.: Microelectron. J.. 2002, 33: 313. COI number [1:CAS:528:DC%2BD38XitFamtb0%3D] 10.1016/S0026-2692(01)00124-0

    Article  Google Scholar 

  32. 32.

    A. Polimeni et al., Phys. Rev. B 59, 5064 (1999); A. Patane et al., Appl. Phys. Lett. 75, 814 (1999)

    Article  Google Scholar 

  33. 33.

    Snell BR, et al.: Phys. Rev. Lett.. 1987, 59: 2806. COI number [1:CAS:528:DyaL1cXos1Sisw%3D%3D] 10.1103/PhysRevLett.59.2806

    Article  Google Scholar 

  34. 34.

    R.K. Hayden et al., Phys. Rev. Lett. 66, 1749 (1991); O.H. Hughes et al., J. Vac. Sci. Technol. B7, 1041 (1989)

    Article  Google Scholar 

  35. 35.

    J. Wang et al., Phys. Rev. Lett. 73, 1146 (1994); P. Beton et al., Phys. Rev. Lett. 75, 1996 (1995)

    Article  Google Scholar 

  36. 36.

    Sakai JWL, et al.: Phys. Rev. B. 1993, 48: 5664. COI number [1:CAS:528:DyaK3sXms1Sht7s%3D] 10.1103/PhysRevB.48.5664

    Article  Google Scholar 

  37. 37.

    Crommie MF, et al.: Nature. 1993, 262: 218. COI number [1:CAS:528:DyaK3sXms1ShtLo%3D]

    Google Scholar 

  38. 38.

    Patanè A, et al.: Phys. Rev. B. 2000, 62: 13595. 10.1103/PhysRevB.62.13595

    Article  Google Scholar 

  39. 39.

    Vdovin EE, et al.: Science. 2000, 290: 124. 10.1126/science.290.5489.122

    Article  Google Scholar 

  40. 40.

    Main PC, et al.: Phys. Rev. lett.. 2000, 84: 729. COI number [1:CAS:528:DC%2BD3cXlvVKmtQ%3D%3D] 10.1103/PhysRevLett.84.729

    Article  Google Scholar 

  41. 41.

    Levin A, et al.: Phys. Stat. Sol.. 2001, 224: 715. COI number [1:CAS:528:DC%2BD3MXisFansrY%3D] 10.1002/(SICI)1521-3951(200104)224:3<715::AID-PSSB715>3.0.CO;2-L

    Article  Google Scholar 

  42. 42.

    Bimberg D, et al.: Quantum Dot Heterostructures. John Wiley & Sons, New York; 1999.

    Google Scholar 

  43. 43.

    Stier O, et al.: Phys. Rev. B. 1999, 59: 5688. COI number [1:CAS:528:DyaK1MXhtF2msLc%3D] 10.1103/PhysRevB.59.5688

    Article  Google Scholar 

  44. 44.

    Wang LW, et al.: Phys. Rev. B. 1999, 59: 5678. COI number [1:CAS:528:DyaK1MXhtF2msLY%3D] 10.1103/PhysRevB.59.5678

    Article  Google Scholar 

  45. 45.

    Zh.I. Alferov et al., Sov. Phys. Semicond. 4, 1573 (1970); Zh.I. Alferov et al., Fiz. Tekh. Poluprovodn. 4, 1826 (1970); I. Hayashi et al., Appl. Phys. Lett. 17, 109 (1970); R. C. Miller et al., J. Appl. Phys. 47, 4509 (1976); R.D. Dupuis et al., Appl. Phys. Lett. 32, 295 (1978); W.T. Tsang, Appl. Phys. Lett. 39, 786 (1981); Zh.I. Alferov et al., Pis’ma v Z.Tekn. Fiz. 14, 1803 (1988); N. Chand et al., Appl. Phys. Lett. 58, 1704 (1991); N. Kirstaedter et al., Electron. Lett. 30, 1416 (1994); N.N. Ledentsov et al., Phys. Rev. B 54, 8743 (1996); G.T. Liu et al., Electron. Lett. 35, 1163 (1999); R.L. Sellin et al., Appl. Phys. Lett. 78, 1207 (2001)

    Google Scholar 

  46. 46.

    D. Bimberg et al., MRS Bulletin July 2002, p. 531

  47. 47.

    Sellin RL, et al.: Appl. Phys. Lett.. 2001, 78: 1207. COI number [1:CAS:528:DC%2BD3MXhtl2gur4%3D] 10.1063/1.1350596

    Article  Google Scholar 

  48. 48.

    Kirstaedter N, et al.: Electron. Lett.. 1994, 30: 1416. COI number [1:CAS:528:DyaK2MXhvFygtr4%3D] 10.1049/el:19940939

    Article  Google Scholar 

  49. 49.

    Shoji H, et al.: IEEE Photon. Technol. Lett.. 1995, 7: 1385. 10.1109/68.477257

    Article  Google Scholar 

  50. 50.

    Alferov ZI, et al.: Semiconductors. 1996, 30: 193.

    Google Scholar 

  51. 51.

    Ledentsov NN, et al.: Phys. Rev. B. 1996, 54: 8743. COI number [1:CAS:528:DyaK28Xmt1Oisrs%3D] 10.1103/PhysRevB.54.8743

    Article  Google Scholar 

  52. 52.

    Xie Q, et al.: IEEE Photon. Technol. Lett.. 1996, 8: 965. 10.1109/68.508705

    Article  Google Scholar 

  53. 53.

    Huang X, et al.: Electron. Lett.. 2001, 36: 41. 10.1049/el:20000124

    Article  Google Scholar 

  54. 54.

    Chand N, et al.: Appl. Phys. Lett.. 1991, 58: 1704. COI number [1:CAS:528:DyaK3MXitlOhsb0%3D] 10.1063/1.105114

    Article  Google Scholar 

  55. 55.

    Heinrichsdorff H, et al.: Appl. Phys. Lett.. 2000, 76: 556. COI number [1:CAS:528:DC%2BD3cXnsValtA%3D%3D] 10.1063/1.125816

    Article  Google Scholar 

  56. 56.

    Sellin RL, et al.: Electron. Lett.. 2002, 38: 883. COI number [1:CAS:528:DC%2BD38Xns1WisLs%3D] 10.1049/el:20020602

    Article  Google Scholar 

  57. 57.

    Ustinov VM, et al.: Tech. Phys. Lett.. 1998, 24: 49. COI number [1:CAS:528:DyaK1cXis1Citb0%3D] 10.1134/1.1261977

    Article  Google Scholar 

  58. 58.

    Hunzer K, et al.: J. Appl. Phys.. 2000, 87: 1496. 10.1063/1.372040

    Article  Google Scholar 

  59. 59.

    Park G, et al.: Appl. Phys. Lett.. 1999, 75: 3267. COI number [1:CAS:528:DyaK1MXnsVaksb0%3D] 10.1063/1.125320

    Article  Google Scholar 

  60. 60.

    Huffuker DL, et al.: Appl. Phys. Lett.. 1998, 73: 2564. 10.1063/1.122534

    Article  Google Scholar 

  61. 61.

    Mukai K, et al.: IEEE J. Quantum Electon.. 2000, 36: 472. COI number [1:CAS:528:DC%2BD3cXisVSntrk%3D] 10.1109/3.831025

    Article  Google Scholar 

  62. 62.

    Ustinov VM, et al.: Appl. Phys. Lett.. 1999, 74: 2815. COI number [1:CAS:528:DyaK1MXivV2nur4%3D] 10.1063/1.124023

    Article  Google Scholar 

  63. 63.

    Huang X, et al.: Electron. Lett.. 2000, 36: 41. COI number [1:CAS:528:DC%2BD3cXhsF2gu7c%3D] 10.1049/el:20000124

    Article  Google Scholar 

  64. 64.

    Kovsh AR, et al.: Electron. Lett.. 2002, 38: 1104. COI number [1:CAS:528:DC%2BD38XoslWjtLw%3D] 10.1049/el:20020793

    Article  Google Scholar 

  65. 65.

    Jang JW, et al.: Appl. Phys. Lett.. 2004, 85: 3675. COI number [1:CAS:528:DC%2BD2cXptFehsrs%3D] 10.1063/1.1812365

    Article  Google Scholar 

  66. 66.

    Maksimov MV, et al.: Semiconductors. 2004, 38: 732. COI number [1:CAS:528:DC%2BD2cXkvVejsLY%3D] 10.1134/1.1766381

    Article  Google Scholar 

  67. 67.

    Wilk A, et al.: J. Cryst. Growth. 2005, 278: 335. COI number [1:CAS:528:DC%2BD2MXjsVelt78%3D] 10.1016/j.jcrysgro.2005.01.040

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Engineering and Physical Sciences Research Council (U.K.) and the SANDiE Network of Excellence of the European Commission (Contract no. NMP4-CT-2004-500101). I am grateful to L. Eaves, A. Patane, A. Polimeni, P.C. Main, K. Takehana, F. Pulizzi, A. Levin, S. Sanguinetti, M. Guzzi, M.D. Upward, P. Moriarty, M. Al-Khafaji, A.G. Cullis, E.E. Vdovin, Yu.N. Khanin, Yu.V. Dubrovskii, G. Hill, D. Granados, J.M. Garcia, N.N. Ledenstov and D. Bimberg for their contribution to this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Henini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Henini, M. Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy. Nanoscale Res Lett 1, 32 (2006). https://doi.org/10.1007/s11671-006-9017-5

Download citation

Keywords

  • Heterostructures
  • Semiconductors
  • Self-assembly
  • Quantum dots
  • Lasers
  • Optoelectronics