Skip to main content

A pH sensor based on electric properties of nanotubes on a glass substrate

Abstract

We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface.

[115]

References

  1. Cui Y, Wei Q, Park H, Lieber CM: Science. 2001, 293: 1289. ; COI number [1:CAS:528:DC%2BD3MXmtFCrtrs%3D]; Bibcode number [2001Sci...293.1289C] 10.1126/science.1062711

    Article  Google Scholar 

  2. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM: Proc. Natl. Acad. Sci. USA.. 2004, 101: 14017. ; COI number [1:CAS:528:DC%2BD2cXosVylsro%3D]; Bibcode number [2004PNAS..10114017P] 10.1073/pnas.0406159101

    Article  Google Scholar 

  3. Staii C, Johnson J, Alan T: Nano Lett.. 2005, 5: 1774. COI number [1:CAS:528:DC%2BD2MXosVGgsbw%3D] 10.1021/nl051261f

    Article  Google Scholar 

  4. Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang Y-L, Dai H: J. Am. Chem. Soc. 2004, 126: 1563. COI number [1:CAS:528:DC%2BD2cXksFCitA%3D%3D] 10.1021/ja038702m

    Article  Google Scholar 

  5. Takeda S, Sbagyo A, Sakoda Y, Ishii A, Sawamura M, Sueoka K, Kida H, Mukasa K, Matsumoto K: Biosens. Bioelectron. 2005, 21: 201. COI number [1:CAS:528:DC%2BD2MXlsVClt74%3D] 10.1016/j.bios.2004.08.030

    Article  Google Scholar 

  6. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H: Science. 2000, 287: 622. ; COI number [1:CAS:528:DC%2BD3cXovVWgtA%3D%3D]; Bibcode number [2000Sci...287..622K] 10.1126/science.287.5453.622

    Article  Google Scholar 

  7. Wang J: Analyst. 2005, 130: 421. ; COI number [1:CAS:528:DC%2BD2MXitlOlt78%3D]; Bibcode number [2005rems.book.....W] 10.1039/b414248a

    Article  Google Scholar 

  8. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM: Nature. 2003, 424: 171. ; COI number [1:CAS:528:DC%2BD3sXlt1CktLc%3D]; Bibcode number [2003Natur.424..171M] 10.1038/nature01777

    Article  Google Scholar 

  9. Yu Q, Qin G, Li H, Xia Z, Nian Y, Pei S-S: J. Phys. Chem. B. 2006, 110: 22676. COI number [1:CAS:528:DC%2BD28XhtFSit7bJ] 10.1021/jp064875x

    Article  Google Scholar 

  10. Zhu J, Yudasaka M, Zhang M, Kasuya D, Iijima S: Nano Lett. 2003, 3: 1239. COI number [1:CAS:528:DC%2BD3sXms1Cjs7g%3D] 10.1021/nl034459d

    Article  Google Scholar 

  11. Choi KH, Bourgoin JP, Auvray S, Esteve D, Duesberg GS, Roth S, Burgharm M: Surf. Sci.. 2000, 462: 195. COI number [1:CAS:528:DC%2BD3cXls1Wmtrg%3D] 10.1016/S0039-6028(00)00609-9

    Article  Google Scholar 

  12. Auvray SP, Derycke V, Goffman M, Filoramo A, Jost O, Bourgoin J-P: Nano Lett. 2005, 5: 451. COI number [1:CAS:528:DC%2BD2MXhtFSntrc%3D] 10.1021/nl048032y

    Article  Google Scholar 

  13. Lee M, Im J, Myung S, Kang J, Huang L, Kwon Y-K, Hong S: Nature Nanotechnology. 2006, 1: 67. 10.1038/nnano.2006.46

    Article  Google Scholar 

  14. Jhi S-H, Louie SG, Cohen ML: Phys. Rev. Lett. 2000, 85: 1710. ; COI number [1:CAS:528:DC%2BD3cXlslGntLg%3D]; Bibcode number [2000PhRvL..85.1710J] 10.1103/PhysRevLett.85.1710

    Article  Google Scholar 

  15. Shim M, Javey A, Kam NWS, Dai H: J. Am. Chem. Soc. 2001, 123: 11512. COI number [1:CAS:528:DC%2BD3MXnvVGnurk%3D] 10.1021/ja0169670

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Securities Scholarship Foundation, the Technology and New Energy and Industrial Technology Development Organization (NEDO), and Special Coordination Funds for Promoting Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Takeda.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Takeda, S., Nakamura, M., Ishii, A. et al. A pH sensor based on electric properties of nanotubes on a glass substrate. Nanoscale Res Lett 2, 207 (2007). https://doi.org/10.1007/s11671-007-9053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11671-007-9053-9

Keywords

  • Carbon nanotube
  • Field effect transistor
  • pH
  • Glass
  • Immobilization