Skip to main content

Kinetics of growth of nanowhiskers (nanowires and nanotubes)

Abstract

The kinetics of nanowhiskers growth is studied theoretically taking into account the adatom diffusion from the surface to the top of needle. An exponential growth with time is expected for the initial stages of the process, when the lengthl of the whisker is smaller than the average diffusion length λ of adatoms. It transforms to linear growth rate forl > λ. The formation of nanotubes with a hollow core dislocation is explained by accounting for the role of the stress in the middle of screw dislocations. When the magnitude of the Burgers vector exceeds a critical value, it is energetically more favorable to remove the highly strained material around the dislocation line and to create a tube with an additional free surface. Additionally, there is an important size effect, due to the small radiusR of the nanowhisker. The interplay, between the contributions from the size effects and from the diffusion, explains why for the very thin nanowhiskers the lengthl is proportional to the radiusR while, otherwise the length is inversely proportional to it, i.e.,l1/R.

[123]

References

  1. Givargizov E: J. Cryst. Growth. 1975, 31: 20. COI number [1:CAS:528:DyaE28Xot1KmtQ%3D%3D] 10.1016/0022-0248(75)90105-0

    Article  Google Scholar 

  2. Duan X, Wang J, Lieber C: Appl. Phys. Lett.. 2000, 76: 1116. ; COI number [1:CAS:528:DC%2BD3cXhtlSgtb4%3D]; Bibcode number [2000ApPhL..76.1116D] 10.1063/1.125956

    Article  Google Scholar 

  3. Lew K, Redwing J: J. Cryst. Growth. 2003, 254: 14.

    Article  Google Scholar 

  4. Plante M, LaPierre R: J. Cryst. Growth. 2006, 286: 394. COI number [1:CAS:528:DC%2BD28XjsFan] 10.1016/j.jcrysgro.2005.10.024

    Article  Google Scholar 

  5. Sears GW: Acta Metall.. 1955, 3: 367. COI number [1:CAS:528:DyaG2MXns1ajsQ%3D%3D] 10.1016/0001-6160(55)90042-0

    Article  Google Scholar 

  6. Sears GW: J. Chem. Phys.. 1956, 25: 637. COI number [1:CAS:528:DyaG2sXotF2q] 10.1063/1.1743018

    Article  Google Scholar 

  7. Gomer R: J. Chem. Phys.. 1958, 28: 457. COI number [1:CAS:528:DyaG1cXltl2htg%3D%3D] 10.1063/1.1744158

    Article  Google Scholar 

  8. Dittmar W, Neumann K: Growth and Perfection of Crystals.. Edited by: Doremus R.H., Roberts B.W., Turnball D.. Wiley, New York; 1958.

    Google Scholar 

  9. Dittmar W, Neumann K: Z. Elektrochem.. 1960, 64: 297.

    Google Scholar 

  10. Frank FC: Acta Crystallogr.. 1951, 4: 497. COI number [1:CAS:528:DyaG38XivVymtg%3D%3D] 10.1107/S0365110X51001690

    Article  Google Scholar 

  11. Heindl J, Dorsch W, Strunk HP, St. Müller G, Eckstein R, Hofmann D, Winnacker A: Phys. Rev. Lett.. 1998, 80: 740. ; COI number [1:CAS:528:DyaK1cXlsVyhug%3D%3D]; Bibcode number [1998PhRvL..80..740H] 10.1103/PhysRevLett.80.740

    Article  Google Scholar 

  12. Scapski A: Acta Met.. 1956, 4: 576. 10.1016/0001-6160(56)90159-6

    Article  Google Scholar 

  13. D. Turnbull, M. Cohen, in Modern Aspects of vitreous State ed. by S.D. Mackenzie (Butterworths, London, 1960) p. 38

    Google Scholar 

  14. Avramov I, Russel C, Avramova K: J. Non-Cryst. Sol.. 2004, 337: 220. COI number [1:CAS:528:DC%2BD2cXlsVehsbw%3D] 10.1016/j.jnoncrysol.2004.04.012

    Article  Google Scholar 

  15. Budurov S, Stojcev N, Avramov I: Krist. Technik. 1972, 7: 387. COI number [1:CAS:528:DyaE38XlsFOhsLk%3D] 10.1002/crat.19720070403

    Article  Google Scholar 

  16. Dubrovskii VG, Cirlin GE, Soshnikov IP, Tonkikh AA, Sibirev NV, Samsonenko YuB, Ustinov VM: Phys. Rev. B. 2005, 71: 205325. Bibcode number [2005PhRvB..71t5325D] Bibcode number [2005PhRvB..71t5325D] 10.1103/PhysRevB.71.205325

    Article  Google Scholar 

  17. Ruth V, Hirth P: J. Chem. Phys.. 1964, 41: 3139. COI number [1:CAS:528:DyaF2cXkvVylsL8%3D] 10.1063/1.1725687

    Article  Google Scholar 

  18. E.I. Givargizov, A.A. Chernov, Kristallografiya 18, 147 (1973)

    Google Scholar 

  19. Avramov I, Hoeche Th, Russel C: J. Chem. Phys.. 1999,110(17):8676. ; COI number [1:CAS:528:DyaK1MXisFCgsbg%3D]; Bibcode number [1999JChPh.110.8676A] 10.1063/1.478775

    Article  Google Scholar 

  20. Soshnikov I: Lett. JTF. 2005, 31: 29. in Russian in Russian

    Google Scholar 

  21. V.G. Dubrovskii, G.E. Cirlin, I.P. Soshnikov, A.A. Tonkikh, N.V. Sibirev, Yu. B. Samsonenko, V.M. Ustinov, Phys. Rev. B 71, 205325 (2005)

    Article  Google Scholar 

  22. Dubrovskii VG, Sibirev NV, Cirlin GE: Tech. Phys. Lett. 2004, 30: 682. COI number [1:CAS:528:DC%2BD2cXntVKrtLw%3D] 10.1134/1.1792313

    Article  Google Scholar 

  23. Kashchiev D: Cryst. Growth Design. 2006, 6: 1154. COI number [1:CAS:528:DC%2BD28XjtlOis7o%3D] 10.1021/cg050619i

    Article  Google Scholar 

Download references

Acknowledgment

The support of the EU Project INTERCONY, Contract no NMP4-CT-2006-033200 is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak Avramov.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Avramov, I. Kinetics of growth of nanowhiskers (nanowires and nanotubes). Nanoscale Res Lett 2, 235 (2007). https://doi.org/10.1007/s11671-007-9054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11671-007-9054-8

Keywords

  • Nanotubes
  • Nanowires
  • Nanowhiskers