 Nano Express
 Open Access
 Published:
Analytical expression of Kondo temperature in quantum dot embedded in AharonovBohm ring
Nanoscale Research Letters volume 6, Article number: 604 (2011)
Abstract
We theoretically study the Kondo effect in a quantum dot embedded in an AharonovBohm ring, using the "poor man's" scaling method. Analytical expressions of the Kondo temperature T _{K} are given as a function of magnetic flux Φ penetrating the ring. In this Kondo problem, there are two characteristic lengths, {L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right and L _{K} = ħv _{F} = T _{K}, where v _{F} is the Fermi velocity and {\stackrel{\u0303}{\epsilon}}_{0} is the renormalized energy level in the quantum dot. The former is the screening length of the charge fluctuation and the latter is that of the spin fluctuation, i.e., size of Kondo screening cloud. We obtain diferent expressions of T _{K}(Φ) for (i) L _{c} ≪ L _{K} ≪ L, (ii) L _{c} ≪ L ≪ L _{K}, and (iii) L ≪ L _{c} ≪ L _{K}, where L is the size of the ring. T _{K} is remarkably modulated by Φ in cases (ii) and (iii), whereas it hardly depends on Φ in case (i).
PACS numbers:
Introduction
Since the first observation of the Kondo effect in semiconductor quantum dots [1–3], various aspects of Kondo physics have been revealed, owing to the artificial tunability and flexibility of the systems, e.g., an enhanced Kondo effect with an even number of electrons at the spinsinglettriplet degeneracy [4], the SU(4) Kondo effect with S = 1/2 and orbital degeneracy [5], and the bonding and antibonding states between the Kondo resonant levels in coupled quantum dots [6, 7]. One of the major issues which still remain unsolved in the Kondo physics is the observation of the Kondo singlet state, socalled Kondo screening cloud. The size of the screening cloud is evaluated as L _{K} = ħv _{F}/T _{K}, where v _{F} is the Fermi velocity and T _{K} is the Kondo temperature. There have been several theoretical works on L _{K}, e.g., ringsize dependence of the persistent current in an isolated ring with an embedded quantum dot [8], Friedel oscillation around a magnetic impurity in metal [9], and spinspin correlation function [10, 11].
We focus on the Kondo effect in a quantum dot embedded in an AharonovBohm (AB) ring. In this system, the conductance shows an asymmetric resonance as a function of energy level in the quantum dot, socalled FanoKondo effect. This is due to the coexistence of onebody interference effect and manybody Kondo effect, which was studied by the equationofmotion method with the Green function [12], the numerical renormalization group method [13], the Bethe ansatz [14], the densitymatrix renormalization group method [15], etc. This FanoKondo resonance was observed experimentally [16]. The interference effect on the value of T _{K}, however, has not been fully understood [17, 18].
In our previous work [19], we examined this problem in the small limit of AB ring using the scaling method [20]. Our theoretical method is as follows. First, we create an equivalent model in which a quantum dot is coupled to a single lead. The AB interference effect is involved in the fluxdependent density of states in the lead. Second, the twostage scaling method is applied to the reduced model, to renormalize the energy level in the quantum dot by taking into account the charge fluctuation and evaluate T _{K} by taking spin fluctuation [21]. This method yields T _{K} in an analytical form.
The purpose of this article is to derive an analytical expression of T _{K} for the finite size of the AB ring, using our theoretical method. We find two characteristic lengths. One is the screening length of the charge fluctuation, {L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right with {\stackrel{\u0303}{\epsilon}}_{0} being the renormalized energy level in the quantum dot, which appears in the first stage of the scaling. The other is the size of Kondo screening cloud, L _{K}, which is naturally obtained in the second stage. In consequence, the analytical expression of T _{K} is different for situations (i) L _{c} ≪ L _{K} ≪ L, (ii) L _{c} ≪ L ≪ L _{K}, and (iii) L ≪ L _{c} ≪ L _{K}, where L is the size of the ring. We show that T _{K} strongly depends on the magnetic flux Φ penetrating the AB ring in cases (ii) and (iii), whereas it hardly depends on Φ in case (i).
Model
Our model is shown in Figure 1a. A quantum dot with an energy level ε _{0} is connected to two external leads by tunnel couplings, V _{L} and V _{R}. Another arm of the AB ring (reference arm) and external leads are represented by a onedimensional tightbinding model with transfer integral t and lattice constant a. The size of the ring is given by L = (2l + 1)a. The reference arm includes a tunnel barrier with transmission probability of T _{b} = 4x/(1 + x)^{2} with x = (W/t)^{2}. The AB phase is denoted by ϕ = 2π Φ/Φ_{0}, with flux quantum Φ_{0} = h/e. The Hamiltonian is
where {d}_{\sigma}^{\u2020} and d _{ σ } are creation and annihilation operators, respectively, of an electron in the quantum dot with spin σ. {a}_{i,\sigma}^{\u2020} and a _{ i,σ }are those at site i with spin σ in the leads and the reference arm of the ring. {\widehat{n}}_{\sigma}={d}_{\sigma}^{\u2020}{d}_{\sigma} is the number operator in the dot with spin σ. U is the charging energy in the dot.
We consider the Coulomb blockade regime with one electron in the dot, ε _{0}, ε _{0} + U ≫ Γ, where Γ = Γ_{L} + Γ is the level broadening. {\Gamma}_{\alpha}=\pi {\nu}_{0}{V}_{\alpha}^{2}, with ν _{0} being the local density of states at the end of semiinfinite leads. We analyze the vicinity of the electronhole symmetry of ε _{0} ≈ ε _{0} + U.
We create an equivalent model to the Hamiltonian (1), following Ref. [19]. First, we diagonalize the Hamiltonian H _{leads+ring} for the outer region of the quantum dot. There are two eigenstates for a given wavenumber k; ψk,→〉 represents an incident wave from the left and partly reflected to the left and partly transmitted to the right, whereas ψ _{ k },←〉 represents an incident wave from the right and partly reflected to the right and partly transmitted to the left. Next, we perform a unitary transformation for these eigenstates
where A _{ k } and B _{ k } are determined so that \u3008d\left{H}_{\mathsf{\text{T}}}\right{\stackrel{\u0304}{\psi}}_{k}\u3009=0 with dot state d〉. In consequence, mode ψ _{ k }〉 is coupled to the dot via H _{T}, whereas \mid {\stackrel{\xb0}{\psi}}_{k}\u3009 is completely decoupled.
Neglecting the decoupled mode, we obtain the equivalent model in which a quantum dot is coupled to a single lead. In a wideband limit, the Hamiltonian is written as
with V=\sqrt{{V}_{\mathsf{\text{L}}}^{2}+{V}_{\mathsf{\text{R}}}^{2}} and density of states in the lead
Here, D _{0} is the half of the band width, k _{F} is the Fermi wavenumber, R _{b} = 1  T _{b}, and
where α = 4Γ_{L}Γ_{R}/(Γ_{L} + Γ_{R})^{2} is the asymmetric factor for the tunnel couplings of quantum dot.
The AB interference effect is involved in the fluxdependent density of states in the lead, υ(ε _{ k }) in Eq. (6). As schematically shown in Figure 1(b), υ(ε _{ k }) oscillates with the period of ε _{T}, where ε _{T} = ħv _{F}/L is the Thouless energy for the ballistic systems. We assume that ε _{T} ≪ D _{0}.
Scaling analysis
We apply the twostage scaling method to the reduced model. In the first stage, we consider the charge fluctuation at energies of D ≫ ε _{0}. In this region, the number of electrons in the quantum dot is 0, 1, or 2. We reduce the energy scale from bandwidth D _{0} to D _{1} where the charge fluctuation is quenched. By integrating out the excitations in the energy range of D _{1} < D < D _{0}, we renormalize the energy level in the quantum dot ε _{0}. In the second stage of scaling, we consider the spin fluctuation at low energies of D < D _{1}. We make the Kondo Hamiltonian and evaluate the Kondo temperature.
Renormalization of energy level
In the first stage, the charge fluctuation is taken into account. We denote E _{0}, E _{1}, and E _{2} for the energies of the empty state, singly occupied state, and doubly occupied state in the quantum dot, respectively. Then the energy levels in the quantum dot are given by ε _{0} = E _{1}  E _{0} for the first electron and ε _{1} = E _{2}  E _{1} for the second electron. When the bandwidth is reduced from D to D  dD, E _{0}, E _{1}, and E _{2} are renormalized to E _{0} + dE _{0}, E _{1} + dE _{1}, and E _{2} + dE _{2}, where
within the secondorder perturbation with respect to tunnel coupling V. For D ≫ E _{1}  E _{0}, E _{2}  E _{1}, they yield the scaling equations for the energy levels
where i = 0, 1 and
By the integration of the scaling equation from D _{0} to {D}_{1}\simeq \left{\stackrel{\u0303}{\epsilon}}_{0}\right, we renormalize the energy levels in the quantum dot ε _{ i } to {\stackrel{\u0303}{\epsilon}}_{1}:
where
Si(x) goes to 0 as x → 0 and π/2 as x → ∞.
From Equation 10, we conclude that
when {\epsilon}_{\mathsf{\text{T}}}\gg \left{\stackrel{\u0303}{\epsilon}}_{0}\right, and {\stackrel{\u0303}{\epsilon}}_{i}={\epsilon}_{i} when {\epsilon}_{\mathsf{\text{T}}}\ll \left{\stackrel{\u0303}{\epsilon}}_{0}\right. These results can be rewritten in terms of length scale. We introduce {L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right, which corresponds to the screening length of charge fluctuation. When L ≪ L _{c}, the renormalized level {\stackrel{\u0303}{\epsilon}}_{i} is given by Equation 11. When L ≫ L _{c}, the energy level is hardly renormalized and is independent of ϕ.
Renormalization of exchange coupling
In the second stage, we consider the spin fluctuation at low energies of D < D _{1}. For the purpose, we make the Kondo Hamiltonian via the SchriefferWolff transformation,
where {S}^{+}={d}_{\mathrm{\uparrow}}^{\u2020}{d}_{\mathrm{\downarrow}}, {S}^{}={d}_{\mathrm{\downarrow}}^{\u2020}{d}_{\mathrm{\uparrow}} and {S}_{z}=\left({d}_{\mathrm{\uparrow}}^{\u2020}{d}_{\mathrm{\uparrow}}{d}_{\mathrm{\downarrow}}^{\u2020}{d}_{\mathrm{\downarrow}}\right)\u22152 are the spin operators in the quantum dot. The density of states in the lead is given by Equation 6 and half of the band width is now {D}_{1}\simeq \left{\stackrel{\u0303}{\epsilon}}_{0}\right. H _{ J } represents the exchange coupling between spin 1/2 in the dot and spin of conduction electrons, whereas H _{ K } represents the potential scattering of the conduction electrons by the quantum dot. The coupling constants are given by
By changing the bandwidth, we renormalize the coupling constants J and K so as not to change the lowenergy physics within the secondorder perturbation with respect to H _{ J } and H _{ K }. Then we obtain the scaling equations of
The energy scale D where the fixed point (J → ∞) is reached yields the Kondo temperature.
Scaling equations (15) and (16) are analyzed in two extreme cases. In the case of D ≫ ε _{T}, the oscillating part of the density of states ν(ε _{ k }) is averaged out in the integration [22]. Then the scaling equations are effectively rewritten as
In the case of D ≪ ε _{T}, the expansion around the fixed point [23] yields
where ξ = D/T _{K}  1 and
Now we evaluate the Kondo temperature in situations (i) L _{c} ≪ L _{K} ≪ L, (ii) L _{c} ≪ L ≪ L _{K}, and (iii) L ≪ L _{c} ≪ L _{K}, where L _{K} = ν _{F} ħ/T _{K}. In situation (i), ε _{T} ≪ T _{K} and thus J and K follow Equations 17 and 18 until the scaling ends at D ≃ T _{K}. Integration of Equation 17 from D _{1} to T _{K} yields
where J={V}^{2}\left({\epsilon}_{0}{}^{1}+{\epsilon}_{1}^{1}\right).
In situation (iii), D _{1} ≪ ε _{T}. Then the scaling equations (19) and (20) are valid in the whole scaling region (T _{K} < D < D _{1}). From the equations, we obtain
where f(ϕ) = [1  f(k _{F} L + π/2, ϕ)]^{1}.
In situation (ii), T _{K} ≪ ε _{T} ≪ D _{1}. The coupling constants, J and K, are renormalized following Equations 17 and 18 when D is reduced from D _{1} to ε _{T} and following Equations 19 and 20 when D is reduced from ε _{T} to T _{K}. We match the solutions of the respective equations around D = ε _{T} and obtain
where γ ≈ 0.57721 is the Euler constant.
The different expressions of T _{K}(ϕ) in the three situations can be explained intuitively. In situation (i), ε _{T} ≪ T _{K}. Then the oscillating part of the density of states ν(ε _{ k }) with period ε _{T} is averaged out in the scaling procedure (Figure 2a). As a result, the magneticflux dependence of T _{K} disappears. In situation (iii), T _{K} ≪ ε _{T}. Then ν(ε _{ k }) is almost constant in the scaling (Figure 2c). The Kondo temperature significantly depends on the magnetic flux through the constant value of ν(0) at the Fermi level.
Conclusions
We have theoretically studied the Kondo effect in a quantum dot embedded in an AB ring. The twostage scaling method yields an analytical expression of the Kondo temperature T _{K} as a function of AB phase ϕ of the magnetic flux penetrating the ring. We have obtained different expressions of T _{K}(ϕ) for (i) L _{c} ≪ L _{K} ≪ L, (ii) L _{c} ≪ L ≪ L _{K}, and (iii) L ≪ L _{c} ≪ L _{K}, where L is the size of the ring, {L}_{\mathsf{\text{c}}}=\hslash {v}_{\mathsf{\text{F}}}\u2215\left{\stackrel{\u0303}{\epsilon}}_{0}\right is the screening length of the charge fluctuation, and L _{K} = ħν _{F}/T _{K} is the screening length of the charge fluctuation, i.e., size of Kondo screening cloud. T _{K} strongly depends on ϕ in cases (ii) and (iii), whereas it hardly depends on ϕ in case (i).
Abbreviations
 AB:

AharonovBohm.
References
GoldhaberGordon D, Shtrikman H, Mahalu D, AbuschMagder D, Meirav U, Kastner MA: Kondo effect in a singleelectron transistor. Nature 1998, 391: 156. 10.1038/34373
Cronenwett SM, Oosterkamp TH, Kouwenhoven LP: A tunable Kondo effect in quantum dots. Science 1998, 281: 540.
van der Wiel WG, De Franceschi S, Fujisawa T, Elzerman JM, Tarucha S, Kouwenhoven LP: Science. 2000, 289: 2105. 10.1126/science.289.5487.2105
Sasaki S, De Franceschi S, Elzerman JM, van der Wiel WG, Eto M, Tarucha S, Kouwenhoven LP: Kondo effect in an integerspin quantum dot. Nature 2000, 405: 764. 10.1038/35015509
Sasaki S, Amaha S, Asakawa N, Eto M, Tarucha S: Enhanced Kondo effect via tuned orbital degeneracy in a spin 1/2 artificial atom. Phys Rev Lett 2004, 93: 17205.
Aono T, Eto M, Kawamura K: Conductance through quantum dot dimer below the Kondo temperature. J Phys Soc Jpn 1998, 67: 1860. 10.1143/JPSJ.67.1860
Jeong H, Chang AM, Melloch MR: The Kondo effect in an artificial quantum dot molecule. Science 2001, 293: 2221. 10.1126/science.1063182
Affleck I, Simon P: Detecting the Kondo screening cloud around a quantum dot. it Phys Rev Lett 2001, 86: 432. 10.1103/PhysRevLett.86.432
Affleck I, Borda L, Saleur H: Friedel oscillations and the Kondo screening cloud. Phys Rev B 2008, 77: 180404(R).
Borda L: Kondo screening cloud in a onedimensional wire: Numerical renormalization group study. Phys Rev B 2008, 75: 041307(R).
Holzner A, McCulloch I, Schollwock U, Delft J, HeidrichMeisner F: Kondo screening cloud in the singleimpurity Anderson model: A density matrix renormalization group study. Phys Rev B 2009, 80: 205114.
Bulka BR, Stefański P: Fano and Kondo resonance in electronic current through nanodevices. Phys Rev Lett 2001, 86: 5128. 10.1103/PhysRevLett.86.5128
Hofstetter W, König J, Schoeller H: Kondo Correlations and the Fano Effect in Closed AharonovBohm Interferometers. Phys Rev Lett 2001, 87: 156803.
Konik RM: KondoFano resonances in quantum dots; results from the Bethe ansatz. J Stat Mech: Theor Exp 2004, 2004: L11001. 10.1088/17425468/2004/11/L11001
Maruyama I, Shibata N, Ueda K: Theory of FanoKondo effect of transport properties through quantum dots. J Phys Soc Jpn 2004, 73: 3239. 10.1143/JPSJ.73.3239
Katsumoto S, Aikawa H, Eto M, Iye Y: Tunable Fano]Kondo effect in a quantum dot with an Aharonov]Bohmring. Phys Status Solidi C 2006, 3: 4208. 10.1002/pssc.200672880
Simon P, Affleck I: Finitesize effects in conductance measurements on quantum dots. Phys Rev Lett 2002, 89: 206602.
Simon P, EntinWohlman O, Aharony A: Fluxdependent Kondo temperature in an AharonovBohm interferometer with an inline quantum dot. Phys Rev B 2005, 72: 245313.
Yoshii R, Eto M: Scaling Analysis for Kondo Effect in Quantum Dot Embedded in AharonovBohm Ring. J Phys Soc Jpn 2008, 77: 123714. 10.1143/JPSJ.77.123714
Anderson PW: A poor man's derivation of scaling laws for the Kondo problem. J Phys C 1970, 3: 2439.
Haldane FDM: Scaling theory of the asymmetric Anderson model. Phys Rev Lett 1978, 40: 416. 10.1103/PhysRevLett.40.416
Yoshii R, Eto M: Scaling analysis of Kondo screening cloud in a mesoscopic ring with an embedded quantum dot. Phys Rev B 2011, 83: 165310.
Eto M: Enhancement of Kondo Effect in Multilevel Quantum Dots. J Phys Soc Jpn 2005, 74: 95. 10.1143/JPSJ.74.95
Acknowledgements
This study was partly supported by a GrantinAid for Scientific Research from the Japan Society for the Promotion of Science, and by Global COE Program "HighLevel Global Cooperation for LeadingEdge Platform on Access Space (C12)."
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors' contributions
All authors read and approved the final manuscript.
Authors’ original submitted files for images
Below are the links to the authors’ original submitted files for images.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Yoshii, R., Eto, M. Analytical expression of Kondo temperature in quantum dot embedded in AharonovBohm ring. Nanoscale Res Lett 6, 604 (2011). https://doi.org/10.1186/1556276X6604
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1556276X6604
Keywords
 Spin Fluctuation
 Screen Length
 Charge Fluctuation
 Renormalization Group Method
 Kondo Effect