Skip to main content
Account

Table 2 Correlations for boiling flow heat transfer coefficient

From: Boiling local heat transfer enhancement in minichannels using nanofluids

Reference

Fluid composition

Description

Correlation

  

Geometry

Comment

Parameter range

 

Warrier et al. [27]

FC-84

Small rectangular parallel channels of Dh = 0.75mm

Single-phase forced convection and subcooled and saturated nucleate boiling

3 < x <55%

h tp = h sp 1 + 6 Bo 1 16 5.3 1 855 Bo χ v , x 0.65 6 h sp = 0.023 R e l 0.8 P r l 0.4 λ l / D h 7

Kandlikar and Balasubramanian [28]

Water, refrigerants, and cryogenic fluids

Minichannels and microchannels

Flow boiling

x <0.7 ~ 0.8

Co < 0.65 , h tp = h sp 1.136 Co 0.9 25 F r lo c + 667.2 Bo lo 0.7 8 Co > 0.65 , h tp = h sp 0.6683 Co 0.2 25 F r lo c + 1058 Bo lo 0.7 9

hsp is calculated Equation 7

Sun and Mishima [29]

Water, refrigerants (R11, R12, R123, R134a, R141b, R22, R404a, R407c, R410a) and CO2

Minichannel diameters from 0.21 to 6.05 mm

Flow boiling laminar flow region

Re L < 2,000 and Re G < 2,000

h tp = 6 R e lo 1.05 Bo 0.54 λ l We l 0.191 ρ l / ρ g 0.142 D h 10

Bertsch et al. [30]

Hydraulic diameters ranging from 0.16 to 2.92 mm

Minichannels

Flow boiling and vapor quality

0 to 1

h tp = 1 χ v , x h nb + 1 + 80 χ v , x 2 χ v , x 6 e 0.6 Co f h sp 11

hnb is calculated by Cooper [35]: h nb = 55 P R 0.12 0.087 ln ξ 0.4343 ln P R 0.55 M 0.5 q 0.67 12

hsp = χv,xhsp,go + (1 − χv,x)hsp,lo (13) h sp , ko = 3.66 + 0.0668 R e ko P r k D h / L 1 + 0.04 R e ko P r k D h / L 2 / 3 λ D h 14 Co f = σ g ρ l ρ g D h 2 15

Temperature

−194°C to 97°C

Heat flux

4–1,150 kW/m2

Mass flux

20–3,000 kg/m2s

Lazarek and Black [31]

R113

Macrochannels 3.15 mm inner diameter tube

Saturated flow boiling

-

N u x = 30 R e lo 0.857 Bo 0.714 16

Gungor and Winterton [32]

Water and refrigerants (R-11, R-12, R-22, R-113, and R-114)

Horizontal and vertical flows in tubes and annuli D = 3 to 32 mm

Saturated and subcooled boiling flow

0.008 < psat < 203 bar; 12 < G < 61.518 kg/m2s; 0 < x < 173%; 1 < q < 91.534 kW/m2

htp = (SS2 + FF2)hsp (17)

hsp is calculated Equation 6

S = 1 + 3, 000Bo0.86 (18) F = 1.12 χ v , x 1 χ v , x 0.75 ρ l ρ g 0.41 19 S 2 = F r lo ( 0.1 - 2 Fr ) lo if horizontal with F r lo < 0.05 1 otherwise 20 F 2 = F r lo 0.5 if horizontal with F r lo < 0.05 1 o therwise 21

Liu and Witerton [36]

Water, refrigerants and ethylene glycol

Vertical and horizontal tubes, and annuli

Subcooled and saturated flow boiling

-

h tp = F h lo 2 + S h nb 2 22

hnb is calculated by Cooper [35] (Equation 11) F = 0.35 1 + χ v , x μ l C p , l λ l ρ l ρ v 1 23 S = 1 + 0.055 F 0.5 R e lo 0.16 24

Kew and Cornwell [33]

R141b

Single tubes of 1.39–3.69 mm inner diameter

Nucleate boiling, confined bubble boiling, convective boiling, partial dry out

-

h tp = 30 R e lo 0.857 Bo 0.714 λ l D h 1 1 χ v , x 0.143 25

Yan and Lin [34]

R134a

28 parallel tubes 2 mm

Convective boiling

G = 50 to 200 kg/m2s; q = 0.5 to 2 W/cm2

h tp = C 1 Co C 2 + C 3 Bo C 4 F r lo 1 χ v , m 0.8 h l 26

hl = 4.364λl/Dh (27) C m = C m , 1 Re lo C m , 2 T R C m , 3 28

The best fitting values for the constants Cm,1, Cm,2, and Cm,3 are listed in Table 3

Navigation