Skip to main content

Advertisement

Table 2 Correlations for boiling flow heat transfer coefficient

From: Boiling local heat transfer enhancement in minichannels using nanofluids

Reference Fluid composition Description Correlation
   Geometry Comment Parameter range  
Warrier et al. [27] FC-84 Small rectangular parallel channels of Dh = 0.75mm Single-phase forced convection and subcooled and saturated nucleate boiling 3 < x <55% h tp = h sp 1 + 6 Bo 1 16 5.3 1 855 Bo χ v , x 0.65 6 h sp = 0.023 R e l 0.8 P r l 0.4 λ l / D h 7
Kandlikar and Balasubramanian [28] Water, refrigerants, and cryogenic fluids Minichannels and microchannels Flow boiling x <0.7 ~ 0.8 Co < 0.65 , h tp = h sp 1.136 Co 0.9 25 F r lo c + 667.2 Bo lo 0.7 8 Co > 0.65 , h tp = h sp 0.6683 Co 0.2 25 F r lo c + 1058 Bo lo 0.7 9
hsp is calculated Equation 7
Sun and Mishima [29] Water, refrigerants (R11, R12, R123, R134a, R141b, R22, R404a, R407c, R410a) and CO2 Minichannel diameters from 0.21 to 6.05 mm Flow boiling laminar flow region Re L < 2,000 and Re G < 2,000 h tp = 6 R e lo 1.05 Bo 0.54 λ l We l 0.191 ρ l / ρ g 0.142 D h 10
Bertsch et al. [30] Hydraulic diameters ranging from 0.16 to 2.92 mm Minichannels Flow boiling and vapor quality 0 to 1 h tp = 1 χ v , x h nb + 1 + 80 χ v , x 2 χ v , x 6 e 0.6 Co f h sp 11
hnb is calculated by Cooper [35]: h nb = 55 P R 0.12 0.087 ln ξ 0.4343 ln P R 0.55 M 0.5 q 0.67 12
hsp = χv,xhsp,go + (1 − χv,x)hsp,lo (13) h sp , ko = 3.66 + 0.0668 R e ko P r k D h / L 1 + 0.04 R e ko P r k D h / L 2 / 3 λ D h 14 Co f = σ g ρ l ρ g D h 2 15
Temperature −194°C to 97°C
Heat flux 4–1,150 kW/m2
Mass flux 20–3,000 kg/m2s
Lazarek and Black [31] R113 Macrochannels 3.15 mm inner diameter tube Saturated flow boiling - N u x = 30 R e lo 0.857 Bo 0.714 16
Gungor and Winterton [32] Water and refrigerants (R-11, R-12, R-22, R-113, and R-114) Horizontal and vertical flows in tubes and annuli D = 3 to 32 mm Saturated and subcooled boiling flow 0.008 < psat < 203 bar; 12 < G < 61.518 kg/m2s; 0 < x < 173%; 1 < q < 91.534 kW/m2 htp = (SS2 + FF2)hsp (17)
hsp is calculated Equation 6
S = 1 + 3, 000Bo0.86 (18) F = 1.12 χ v , x 1 χ v , x 0.75 ρ l ρ g 0.41 19 S 2 = F r lo ( 0.1 - 2 Fr ) lo if horizontal with F r lo < 0.05 1 otherwise 20 F 2 = F r lo 0.5 if horizontal with F r lo < 0.05 1 o therwise 21
Liu and Witerton [36] Water, refrigerants and ethylene glycol Vertical and horizontal tubes, and annuli Subcooled and saturated flow boiling - h tp = F h lo 2 + S h nb 2 22
hnb is calculated by Cooper [35] (Equation 11) F = 0.35 1 + χ v , x μ l C p , l λ l ρ l ρ v 1 23 S = 1 + 0.055 F 0.5 R e lo 0.16 24
Kew and Cornwell [33] R141b Single tubes of 1.39–3.69 mm inner diameter Nucleate boiling, confined bubble boiling, convective boiling, partial dry out - h tp = 30 R e lo 0.857 Bo 0.714 λ l D h 1 1 χ v , x 0.143 25
Yan and Lin [34] R134a 28 parallel tubes 2 mm Convective boiling G = 50 to 200 kg/m2s; q = 0.5 to 2 W/cm2 h tp = C 1 Co C 2 + C 3 Bo C 4 F r lo 1 χ v , m 0.8 h l 26
hl = 4.364λl/Dh (27) C m = C m , 1 Re lo C m , 2 T R C m , 3 28
The best fitting values for the constants Cm,1, Cm,2, and Cm,3 are listed in Table 3