# Table 2 Parameters of globular model for the matrix and ion exchanger layer

Parameter Homogeneous model Heterogeneous model
Matrix Ion-exchanger Spheres Matrix Ion-exchanger
TiO2-HZD-2 TiO2-HZD-7    TiO2-HZD-2 TiO2-HZD-7
ϵ, $\overline{\mathit{ϵ}}$ 0.23 0.29 0.46   - - -
S, m2 kg−1 820 1.05 × 105 2.09 × 105 - - - -
ϵ p - - - I - 0.03 0.42
II 0.02 0.26 0.04
III 0.21
Packing CFC or HXG CBC SC I - CBC SC
II CFC or HXG
III - -
$\mathit{S}\frac{\mathit{ϵ}}{{\mathit{ϵ}}_{\mathrm{p}}}$, $\mathit{S}\frac{\overline{\mathit{ϵ}}}{{\mathit{ϵ}}_{\mathrm{p}}}$, m2 kg−1 - - - I   7.77 × 105 2.27 × 105
II 8,176 3.06 × 104 3.88 × 104
III 201 - -
r g , nm 859 7 4 I - 5 3
II 86 23 20
III 3,500 - (≈400)
r n a, nm 133 (204) 1 (≤1) 1 (≤1) I - 1 (≤1) 1 (≤1)
II 13 (8) 5 (8) 8 (4)
III 542 (204) - (190)
r c a, nm 355 (1,730) 2 (2) 2 (2) I - 2 (2) 2 (2)
II 36 (39) 9 (8) 13 (6)
III 1,449 (1730) - (331)
1. aExperimental values identified according to pore size distributions are given in brackets.
2. Differential distributions of pore volume are given in Figure 7. The r values are represented as logr; the peaks are symmetric. Thus, the plots can be resolved by Lorentz functions. Since $\frac{\mathit{dV}}{\mathit{d}\left(log\mathit{r}\right)}=2.3\mathit{r}\frac{\mathit{dV}}{\mathit{dr}}$, the peak area gives the pore volume caused by each type of particles.