Skip to content

Advertisement

  • Nano Express
  • Open Access

Biocompatible/Degradable Silk Fibroin:Poly(Vinyl Alcohol)-Blended Dielectric Layer Towards High-Performance Organic Field-Effect Transistor

Nanoscale Research Letters201611:439

https://doi.org/10.1186/s11671-016-1660-x

  • Received: 17 July 2016
  • Accepted: 26 September 2016
  • Published:

Abstract

Biocompatible silk fibroin (SF):poly(vinyl alcohol) (PVA) blends were prepared as the dielectric layers of organic field-effect transistors (OFETs). Compared with those with pure SF dielectric layer, an optimal threshold voltage of ~0 V, high on/off ratio of ~104, and enhanced field-effect mobility of 0.22 cm2/Vs of OFETs were obtained by carefully controlling the weight ratio of SF:PVA blends to 7:5. Through the morphology characterization of dielectrics and organic semiconductors by utilizing atom force microscopy and electrical characterization of the devices, the performance improvement of OFETs with SF:PVA hybrid gate dielectric layers were attributed to the smooth and homogeneous morphology of blend dielectrics. Furthermore, due to lower charge carrier trap density, the OFETs based on SF:PVA-blended dielectric exhibited a higher bias stability than those based on pure SF dielectric.

Keywords

  • Biocompatible
  • Silk fibroin
  • Poly(vinyl alcohol)
  • Organic field-effect transistor
  • Bias stability

Background

Organic field-effect transistors (OFETs) have shown enormous development in the past few decades due to their potential use in large area sensor arrays, flat panel displays, and radio frequency identification [13]. While OFETs with high field-effect mobility (μ), low operating voltage, and good stability are essential for practical use, many researches were conducted to improve these parameters [4, 5]. Especially, as charge carrier conducting channel lies at dielectric/organic semiconductor interface, the dielectric plays an important role in reduce the working voltage of OFETs. An ideal interface should hold minimum charge carrier trap density, and the dielectric would facilitate growth of the upper organic layer in a bottom gate device structure [6]. Many attempts have been applied to modify the interface of gate dielectric and organic semiconductor, such as inserting buffer layer, molecular self-assembly, and UV/ozone (UVO) treatment [79]. Currently, several solution-processed dielectric materials, including polymers, inorganic oxides, hybrids composed of inorganic-organic materials, and self-assembled mono- and multilayers, have been exploited for constructing OFETs [1014]. Meanwhile, another effective way to modify the interface, blending two or more dielectric materials, has been developed to achieve low operating voltage and optimal threshold voltage [1517].

On the other hand, biological materials, such as silk fibroin (SF), chicken albumen, and gelatin, are emerging as potential solution-processed dielectric materials since they are biodegradable, biocompatible, environmentally friendly, natural abundant, and do not require complicated chemical synthesis [1820]. Among the various biological materials, SF has been widely used in field of sensors [21], memory devices [22], and component of dynamic devices [23], owing to its unique characteristics of optical transparency, electrical insulation, and flexibility. Moreover, SF is usually a thin film in an aqueous solution process; thus, it offers a biologically derived and biocompatible analog to the synthetic polymer dielectrics traditionally used. Wang et al. reported that silk fibroin as the gate dielectric layer enhanced the crystal qualities of the upper semiconductors and increased the potential of pentacene OFETs as high-speed devices with the ability to compete with a-IGZO TFTs in display technologies [24]. And Tsai et al. reported that silk fibroin can significantly enhance the mobility of n-type C60/pentacene OFET to 1 cm2/Vs in vacuum [25]. Meanwhile, with a high dielectric constant, dielectric based on SF can reduce the operating voltages [26]. However, SF OFETs are generally limited by bad stability in ambient atmosphere [20]. Poly(vinyl alcohol) (PVA), as a typical polymer dielectric material, has excellent solubility in aqueous solution and high capacitance [27, 28]. Moreover, as the presence of hydroxyl groups (−OH) in PVA, which favored interacting to the carbonyl (−C=O) in SF, the trap density of dielectric layer can be reduced [29]. Hence, the performance and stability of SF-based OFET devices can be dramatically improved by modulating the blends of SF and PVA.

In this work, SF:PVA blends were used to fabricate OFETs as dielectric layers. Through analyzing the electrical characteristics of the devices and the surface morphologies of dielectric and pentacene layers, the surface of SF:PVA blends were more smooth and homogeneous, which leads to an enhanced mobility and optimal threshold voltage. Furthermore, the OFETs based on SF:PVA-blended dielectrics showed a higher bias stability than that based on pure SF under ambient atmosphere due to better dielectric/semiconductor interface property.

Methods

The architecture of the OFETs and chemical structures of SF and PVA are shown in Fig. 1a. An SF aqueous solution with a concentration of ca. 7 wt.% was extracted from cocoons of Chinese silkworm by following the extraction procedure with slight modifications [30]. A 10-g silk was processed 60 min in 0.5 wt.% Na2CO3 solution at 100 °C to remove sericin and then rinsed with deionized water and dried at room temperature. The purified fibroin was dissolved in 150 ml of the ternary solvent, CaCl2-ethanol-water (mole ratio = 1:2:8), by stirring at 75 ± 2 °C for 1 h. The solution was centrifuged by centrifugal machine and dialyzed against deionized water for 5 days. At last, the solution was concentrated to ca. 7 wt.% by slow evaporation of deionized water at 60 °C. PVA (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in deionized water with a concentration of 5 wt.%. Then the obtained solutions were mixed at different weight ratios. Indium tin oxide (ITO) glass substrate was cleaned in acetone, deionized water, and isopropyl alcohol for 15 min each by an ultrasonic bath sequentially. The ca. 500 nm SF, PVA, or SF:PVA-blended dielectric was formed by spin-coating at 1600 rpm for 1 min on the substrate at room temperature. Then, the dielectric layer was baked at 70 °C for 1 h to completely remove residual solvents. Consequently, 30 nm pentacene (TCI, Tokyo, Japan) was evaporated under 3 × 10−4 Pa at a rate of 0.2~0.3 Å/s. At last, 50 nm gold source and drain electrodes were thermally evaporated using a metal shadow mask without breaking the vacuum. The length and width of the channel were 100 μm and 1 cm, respectively.
Fig. 1
Fig. 1

a Schematic structure of OFET based on SF:PVA blends and molecular structures of SF and PVA. bd Typical transfer curve (V DS = −40 V) of devices a, b, and c. eg Typical output curves (V GS = 0 to −40 V with −10 V step) of devices a, b, and c

Morphology of SF, SF:PVA-blended dielectrics, and pentacene films were characterized by atom force microscopy (AFM) (MFP-3D-BIO, Asylum Research, Santa Barbara, CA, USA) in tapping mode. Capacitance of the gate dielectrics were obtained by measuring capacitance-frequency properties of ITO/SF/Au, ITO/PVA/Au and ITO/SF:PVA-blended/Au with Agilent 4294A (Santa Clara, CA, USA). Electrical characteristics of the OFETs were measured using a Keithley 4200 (Keithley, Cleveland, OH, USA) in low humidity atmosphere (RH = ~20 %).

Results and Discussion

The capacitance-frequency properties of different dielectric structures (including ITO/SF:PVA-blended/Au, ITO/SF/Au, and ITO/PVA/Au) were tested as shown in Table 1, and leakage currents of these structures were also tested and kept at a relatively low level of 10−11~10−9 A in all the dielectrics, as shown in support information Additional file 1: Figure S1.
Table 1

Capacitance data of SF, SF:PVA = 7:1, SF:PVA = 21:5, SF:PVA = 7:5, SF:PVA = 7:10, and PVA

Dielectric (SF:PVA)

1:0

7:1

21:5

7:5

7:10

0:1

Capacitance data (nF/cm2)

5.34

5.32

5.23

5.09

5.01

4.51

Devices with different dielectrics were named as device A with SF:PVA = 7:5 blends, device B with pure SF, and device C with only PVA. The transfer and output characteristics of samples A, B, and C are presented in Fig. 1. In the transfer curves, saturation current (V GS = V DS = −40 V) of samples B and C are 37.8 and 15.4 μA, respectively, while the saturation current of sample A achieves 83.1 μA, which is two times higher than that of the sample B. Meanwhile, device A has a threshold voltage (V T) of −1 V, which is almost optimal. On the other hand, V Ts of devices B and C are −11 and ~20 V, which are far from the optimal value of 0 V. It is well known that threshold voltage of OFET is strongly determined by the trap density (N) at the interface of dielectric and organic semiconductor of the device [31]. Low charge trap density at the dielectric/organic semiconductor interface usually benefits to low V T value. Meanwhile, the trap density (N) at the interface of dielectric and organic semiconductor is proportional to sub-threshold slope (SS) and can be extracted by the Eq. (1):
$$ \mathrm{S}\mathrm{S}=\left(kT/q\right) \ln 10\left(1+qN/C\right) $$
(1)

where q is the electronic charge, k is Boltzmann’s constant, T is absolute temperature, and C is the areal capacitance of the dielectric structure. Through calculation, device A holds a small N of about 1.88 × 1012 cm−2 eV−1, while devices B and C show relative large trap densities of 3.12 × 1012 and 5.31 × 1012 cm−2 eV−1, respectively. This result reveals that very few ionic impurities reside on the surface of the SF:PVA-blended thin film and thus contributes low charge trap density. As a consequence, a low threshold voltage (−1 V) can be obtained when utilizing SF:PVA blended films.

The saturate field-effect mobility (μ) is obtained from the transfer characteristics in Fig. 1 using Eq. (2):
$$ {I}_{\mathrm{D}}=\left(W/2L\right)\mu C{\left({V}_{\begin{array}{l}\mathrm{G}\mathrm{S}\\ {}\end{array}}-{V}_{\mathrm{T}}\right)}^2 $$
(2)
where I D, C, V GS, V T, W, and L are drain current in the saturation regime, gate capacitance, gate voltage, threshold gate voltage, channel width, and channel length, respectively. The μ of OFETs based on SF:PVA-blended dielectric is about 0.22 cm2/Vs, higher than that of device with pure SF (0.14 cm2/Vs) and device with pure PVA (0.10 cm2/Vs). It is obvious that low trap density in the SF:PVA-blended layer leads to enhancements of both the charge carrier mobility and current on/off ratio. The field-effect mobility (μ), current on/off ratio (I on/I off), V T, and SS of different devices are summarized in Table 2. As surface roughness is one of the most important properties of dielectric layer, for smooth surface facilitates the formation of good channel layer with less trap states. Thus, surfaces of SF dielectric with/without PVA blends were analyzed through AFM, as shown in Fig. 3. Smooth surfaces were obtained in all the devices, with a root mean square roughness of 0.19 nm on SF:PVA = 7:5 blend layer, and 0.31 nm on pure SF layer. It is well known that the presence of hydroxyl groups (−OH) in PVA will favor interacting to the carbonyl (−C=O) in SF, leading to a smooth and homogeneous morphology [29, 32], thus leading to a high μ value in device based on SF:PVA hybrid gate dielectric. Moreover, according to the higher saturation current in SF:PVA-blended OFETs, and through calculation, OFETs based on SF:PVA-blended dielectric hold a smaller trap density; thus, hydroxyl groups interact with the carbonyl (−C=O) in SF should also introduce low charge trap density at the interface of dielectric and organic semiconductor.
Table 2

Field-effect mobility (μ), current on/off ratio (I on/I off), threshold voltage (V T), and sub-threshold (SS) slope of devices A, B, and C

Device

μ (cm2/Vs)

I on/I off

V T (V)

SS (V/dec)

A

0.22

9.4 × 103

−1

3.5

B

0.14

2.4 × 103

−11

5.5

C

0.10

0.8 × 103

20

11.0

To further optimize the performance of OFETs with SF:PVA blends, a series of OFETs were fabricated by tuning the SF:PVA blends weight ratio to 7:5 (device D), 21:5 (device E), 7:1 (device F), and 7:10 (device G), respectively. Figure 2 depicts the representative transfer plots and output plots of the OFETs with SF:PVA-blended dielectric layers prepared from different weight ratios. It is obvious that a device based on SF:PVA = 7:5 exhibits the best performance with V T of −1 V, μ of 0.22 cm2/Vs, and I on/I off of ~104, which is the best performance among all of the devices. The electrical parameters of devices with different SF:PVA blend ratios are shown in Table 3. Through calculation, a dielectric with SF:PVA = 7:5 blends has hydroxyl groups (−OH) in PVA one to one interacts to the carbonyl (−C=O) in SF, which contributes to the best smoothness and homogeneous morphology. Furthermore, when the concentration of PVA increases in the dielectric layer, the OFET exhibited inferior performance with high sub-threshold slope, which indicates there are more trap state at interface (N is 3.47 × 1012 cm−2 eV−1 for SF:PVA = 7:10 blend OFET) [33] (Fig. 3).
Fig. 2
Fig. 2

ad Typical transfer curve (V DS = −40 V) of devices d, e, f, and g. eh Typical output curves (V GS = 0 to −40 V with −10 V step) of devices d, e, f, and g

Table 3

Field-effect mobility (μ), current on/off ratio (I on/I off), threshold voltage (V T), and sub-threshold slope (SS) of devices D, E, F and G

Device

μ (cm2/Vs)

I on/I off

V T (V)

SS (V/dec)

D

0.22

9.4 × 103

−1

3.5

E

0.19

4.5 × 103

−8

4.5

F

0.17

2.1 × 103

−13

5.0

G

0.10

2.9 × 103

10

6.5

Fig. 3
Fig. 3

AFM topography images along with the cross sections of pure SF (a), SF:PVA = 21:5 (b), and SF:PVA = 7:5 (c), respectively (5 μm × 5 μm). AFM images of the pentacene films grown on pure SF (d), SF:PVA = 21:5 (e), and pure PVA (f) dielectric layer (3 μm × 3 μm)

In practical use for the display backplane, a continuous bias is usually applied to OFET devices, so the bias stability is one of the most important parameters of OFETs [34]. Therefore, the bias stabilities of OFETs based on SF:PVA-blended dielectrics were investigated in the atmosphere. Figure 4a, b show negative bias stabilities of OFETs with pure SF and SF:PVA = 21:5 blend dielectrics with a bias stress of V GS = −30 V. All the devices show shifts towards the negative gate voltage direction. After 45 min stress, the threshold voltage shift (ΔV T) of SF:PVA = 21:5 OFETs is about 3 V, which is smaller than that of the pure SF devices (ΔV T = 5 V). In consistent with the threshold voltage shift, on-current change over time (I t) reveals similar trend as shown in Fig. 4c, while the field-effect mobility keeps unchanged. It is obvious that OFET with SF:PVA = 21:5 blend dielectric layer shows smaller threshold voltage shift and on-current shift than OFET with pure SF dielectric layer.
Fig. 4
Fig. 4

Threshold voltage shifts (ΔV T) of OFETs based pure SF (a) and SF:PVA = 21:5 blends (b), respectively. The bias conditions during the stress were fixed at V GS = −30 V, and the transfer curves were measured at the given time intervals. c Normalized changes in the currents in OFETs under the bias stress of V GS = −30 V

As the bias stability is related to the charge trapping effects of the semiconductor/dielectric interface and organic semiconductor film, charge trapping and trap creation under bias stress occur not only within the channel but also throughout the entire semiconductor film [35, 36]. As shown in Fig. 4, by investigating the morphologies of pentacene films grown on different dielectrics through AFM, the crystal of pentacene grown on pure SF is bigger than that on SF:PVA = 21:5 blend dielectric layer, which means fewer grain boundaries exist on pure SF dielectric. Whereas, grain boundary is not the main reason for bias stress related charge trapping [37]. Therefore, the semiconductor/dielectric interface is responsible for the charge trapping events in this work. The surface property of dielectric layer is important to obtain OFETs with a high bias stability [38]. Morphology of SF:PVA = 21:5 blend dielectric is shown in Fig. 3b. Root mean square roughness of 0.25 nm on SF:PVA = 21:5 blend layer is lower than that of pure SF layer (root mean square roughness of 0.31 nm). Therefore, lower charge trap density is obtained in SF:PVA = 21:5 blend device leading to better bias-stress stability of OFETs [39]. However, the OFET with SF:PVA = 7:5 blend dielectric layer exhibits inferior bias stability than the one with pure SF dielectric as shown in support information (Additional file 1: Figure S2). It is probable that a larger amount of hydroxyl groups (−OH) in SF:PVA = 7:5 blends favors interacting to water in ambient atmosphere, which will result in damage of the dielectric layer, leading to a decrease of bias stability [40, 41]. Thus, with less amount of PVA, a better bias-stress stability could be obtained in device E.

Conclusions

In summary, the optimal threshold voltage and enhanced mobility OFETs incorporating with simple biocompatible SF:PVA hybrid dielectric are fabricated, and the property of SF:PVA-blended dielectric was analyzed through AFM. The V T, μ, and I on/I off of ~0 V, 0.22 cm2/Vs, and ~104, respectively, were obtained in the device with SF:PVA = 7:5 blend dielectrics. Furthermore, the OFET with SF:PVA = 21:5 blend dielectric layer showed a higher bias stability than that with pure SF dielectric. The presence of hydroxyl groups (−OH) in PVA favor interacting with the carbonyl (−C=O) in SF, leading to a smooth and homogeneous morphology, which contributes to lower interface charge trap density. These results indicate that SF:PVA-blended dielectric holds the potential to regulate the performance of OFETs and thus paves a novel way to accelerate the development of nanoscale organic electronic devices.

Abbreviations

I on/I off

Current on/off ratio

ITO: 

Indium tin oxide

N

Trap density

OFET: 

Organic field-effect transistor

PVA: 

Poly(vinyl alcohol)

SF: 

Silk fibroin

SS: 

Sub-threshold slope

UVO: 

UV/ozone

V T

Threshold voltage

μ

Field-effect mobility

Declarations

Acknowledgements

This research was funded by the National Natural Science Foundation of China (NSFC) (Grant No. 61675041, 51503022), the Foundation for Innovation Research Groups of the National Natural Science Foundation of China (Grant No. 61421002), and Science program of Education Commission of Chongqing (Grant No. KJ1601112). Also, this work was sponsored by Science and Technology Department of Sichuan Province via Grant No. 2016HH0027.

Authors’ Contributions

XZ conceived and designed the experiments and wrote the manuscript. XZ, WH, and XY mainly made contribution on the film characterization and analyzed the data. XZ and SH performed the experiments. LL contributed part of the reagents/materials/analysis tools. JY is the supervisor of XZ and the corresponding author of this work. All authors read and approved the final manuscript.

Authors’ Information

Xinming Zhuang received his B.A. degree from School of Optoelectronic Information at UESTC in 2014. He has been studying for his Master’s degree at State Key Laboratory of Electronic Thin Film and Integrated Devices (SKLETFID) and UESTC since 2014, where his main research interests are in OFETs and OFET-based sensors.

Wei Huang received his B.A. degree from the School of Physics, Nankai University, in 2010. He has been studying for his Ph.D. degree at SKLETFID, UESTC, since 2010, where his main research interests are in OFETs and OFET-based sensors. He has been working as a visiting student at Department of Chemistry and the Materials Research Center Northwestern University since 2014.

Xin Yang got his Ph. D. degree from the Graduate School of Material Science and Technology at Sichuan University in 2013. He is faculty of Chongqing University of Arts and Sciences and deputy director of Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices majoring in optoelectronic materials and devices.

Shijiao Han received his B.A. degree from the Yingcai Experimental School at UESTC in 2012. He has been studying for his Ph.D. degree at State SKLETFID and UESTC since 2012, where his main research interests are in OFETs and OFET-based sensors.

Lu Li got his Ph.D. degree from SKLETFID and UESTC in 2012. Now, he is the professor of Chongqing University of Arts and Sciences and deputy director of Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices majoring in optoelectronic materials and devices.

Junsheng Yu got his Ph.D. degree from Graduate School of Bio-Applications and System Engineering at Tokyo University of Agriculture and Technology in 2001. He is the Professor of SKLETFID and UESTC majoring in organic photoelectronic and electronic materials and devices.

Competing Interests

The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China
(2)
Department of Chemistry and the Materials Research Center Northwestern University, 2145, Sheridan Road, Evanston, IL 60208, USA
(3)
Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Research Institute for New Materials and Technology, Chongqing University of Arts and Sciences, Chongqing, 402160, China

References

  1. Zhang C, Li J, Han CB, Zhang LM, Chen XY, Wang LD, Dong GF, Wang ZL (2015) Organic tribotronic transistor for contact-electrification-gated light-emitting diode. Adv Funct Mater 25:5625–5632View ArticleGoogle Scholar
  2. Sablon K (2008) Micrometer- and nanometer-sized organic single crystalline transistors. Nanoscale Res Lett 3:395–396View ArticleGoogle Scholar
  3. Ford MJ, Wang M, Phan H, Nguyen TQ, Bazan GC (2016) Fullerene additives convert ambipolar transport to p-type transport while improving the operational stability of organic thin film transistors. Adv Funct Mater 26:4472–4480View ArticleGoogle Scholar
  4. Tavares L, Hansen JK, Hansen KT, Rubahn HG (2011) Organic nanofibers integrated by transfer technique in field-effect transistor devices. Nanoscale Res Lett 6:319View ArticleGoogle Scholar
  5. Chen H, Dong S, Bai M, Cheng N, Wang H, Li M, Du H, Hu S, Yang Y, Yang T, Zhang F, Gu L, Meng S, Hou S, Guo X (2015) Solution-processable, low-voltage, and high-performance monolayer field-effect transistors with aqueous stability and high sensitivity. Adv Mater 27:2113–2120View ArticleGoogle Scholar
  6. Khim D, Xu Y, Baeg KJ, Kang M, Park WT, Lee SH, Kim IB, Kim J, Kim DY, Liu C, Noh YY (2016) Large enhancement of carrier transport in solution-processed field-effect transistors by fluorinated dielectric engineering. Adv Mater 28:518–526View ArticleGoogle Scholar
  7. Khim D, Shin EY, Xu Y, Park WT, Jin SH, Noh YY (2016) Control of threshold voltage for top-gated ambipolar field-effect transistor by gate buffer layer. ACS Appl Mater Inter 8:17416–17420View ArticleGoogle Scholar
  8. Huang W, Fan H, Zhuang X, Yu J (2014) Effect of UV/ozone treatment on polystyrene dielectric and its application on organic field-effect transistors. Nanoscale Res Lett 9:479View ArticleGoogle Scholar
  9. Li M, Hinkel F, Mullen K, Pisula W (2016) Self-assembly and charge carrier transport of solution-processed conjugated polymer monolayers on dielectric surfaces with controlled sub-nanometer roughness. Nanoscale 8:9211–9216View ArticleGoogle Scholar
  10. Sun J, Zhang B, Katz HE (2011) Materials for printable, transparent, and low-voltage transistors. Adv Funct Mater 21:29–45View ArticleGoogle Scholar
  11. Guo Y, Zhang J, Yu G, Zheng J, Zhang L, Zhao Y, Wen Y, Liu Y (2012) Lowering programmed voltage of organic memory transistors based on polymer gate electrets through heterojunction fabrication. Org Electron 13:1969–1974View ArticleGoogle Scholar
  12. Zhang P, Li S, Liu C, Wei X, Wu Z, Jiang Y, Chen Z (2014) Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon. Nanoscale Res Lett 9:519View ArticleGoogle Scholar
  13. Li S, Ware M, Wu J, Minor P, Wang Z, Wu Z, Jiang Y, Salamo GJ (2012) Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN. Appl Phys Lett 101:122103View ArticleGoogle Scholar
  14. Jeong SK, Kim MH, Lee SY, Seo H, Choi DK (2014) Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping. Nanoscale Res Lett 9:619View ArticleGoogle Scholar
  15. Cho S, Nho SH, Eo M, Lee MH (2014) Effects of processing additive on bipolar field-effect transistors based on blends of poly(3-hexylthiophene) and fullerene bearing long alkyl tails. Org Electron 15:1002–1011View ArticleGoogle Scholar
  16. Oh JD, Kim DK, Kim JW, Ha YG, Choi JH (2016) Low-voltage pentacene thin-film transistors using Hf-based blend gate dielectrics. J Mater Chem C 4:807–814View ArticleGoogle Scholar
  17. Li S, Zhang T, Wu J, Yang Y, Wang Z, Wu Z, Chen Z, Jiang Y (2013) Polarization induced hole doping in graded AlxGa1-xN (x = 0.7 ~ 1) layer grown by molecular beam epitaxy. Appl Phys Lett 102:062108View ArticleGoogle Scholar
  18. O'Connor TF, Rajan KM, Printz AD, Lipomi DJ (2015) Toward organic electronics with properties inspired by biological tissue. J Mater Chem B 3:4947–4952View ArticleGoogle Scholar
  19. Zhu B, Wang H, Leow WR, Cai Y, Loh XJ, Han MY, Chen X (2016) Silk fibroin for flexible electronic devices. Adv Mater 28:4250–4265View ArticleGoogle Scholar
  20. Tsai CL, Tsai LS, Hwang JC (2012) Mobility enhancement by using silk fibroin in F16CuPc organic thin film transistors. Org Electron 13:3315–3318View ArticleGoogle Scholar
  21. Pal RK, Farghaly AA, Wang C, Collinson MM, Kundu SC, Yadavalli VK (2016) Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. Biosens Bioelectron 81:294–302View ArticleGoogle Scholar
  22. Wang H, Zhu B, Wang H, Ma X, Hao Y, Chen X (2016) Ultra-lightweight resistive switching memory devices based on silk fibroin. Small 12:3360–3365View ArticleGoogle Scholar
  23. Schneider D, Gomopoulos N, Koh CY, Papadopoulos P, Kremer F, Thomas EL, Fytas G (2016) Nonlinear control of high-frequency phonons in spider silk. Nat Mater ᅟ:ᅟ, doi:10.1038Google Scholar
  24. Wang CH, Hsieh CY, Hwang JC (2011) Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv Mater 23:1630–1634View ArticleGoogle Scholar
  25. Tsai LS, Hwang JC, Lee CY, Lin YT, Tsai CL, Chang TH, Chueh YL, Meng HF (2013) Solution-based silk fibroin dielectric in n-type C60 organic field-effect transistors: mobility enhancement by the pentacene interlayer. Appl Phys Lett 103:233304View ArticleGoogle Scholar
  26. Shi L, Xu X, Ma M, Li L (2014) High-performance, low-operating voltage, and solution-processable organic field-effect transistor with silk fibroin as the gate dielectric. Appl Phys Lett 104:023302View ArticleGoogle Scholar
  27. Nam S, Seo J, Kim H, Kim Y (2015) 5 V driving organic non-volatile memory transistors with poly(vinyl alcohol) gate insulator and poly(3-hexylthiophene) channel layers. Appl Phys Lett 107:153302View ArticleGoogle Scholar
  28. Singh TB, Meghdadi F, Gunes S, Marjanovic N, Horowitz G, Lang P, Bauer S, Sariciftci NS (2005) High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric. Adv Mater 17:2315–2320View ArticleGoogle Scholar
  29. Kim GH, Lee D, Shanker A, Shao L, Kwon MS, Gidley D, Kim J, Pipe KP (2015) High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater 14:295–300View ArticleGoogle Scholar
  30. Li M, Lu S, Wu Z, Tan K, Minoura N, Kuga S (2002) Structure and properties of silk fibroin-poly(vinyl alcohol) gel. Int J Biol Macromol 30:89–94View ArticleGoogle Scholar
  31. Yadav S, Ghosh S (2016) Amorphous strontium titanate film as gate dielectric for higher performance and low voltage operation of transparent and flexible organic field effect transistor. ACS Appl Mater Inter 8:10436–10442View ArticleGoogle Scholar
  32. Lee KH, Baek DH, Ki CS, Park YH (2007) Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments. Int J Biol Macromol 41:168–172View ArticleGoogle Scholar
  33. Huang W, Shi W, Han S, Yu J (2013) Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric. AIP Adv 3:052122View ArticleGoogle Scholar
  34. Diallo AK, Fages F, Serein-Spirau F, Lère-porte JP, Videlot-Ackermann C (2011) Effect of molecular structure on bias stress effect in organic thin-film transistors. Appl Surf Sci 257:9386–9389View ArticleGoogle Scholar
  35. Sharma A, Mathijssen SGJ, Smits ECP, Kemerink M, de Leeuw DM, Bobbert PA (2010) Proton migration mechanism for operational instabilities in organic field-effect transistors. Phys Rev B 82:075322ᅟGoogle Scholar
  36. Häusermann R, Batlogg B (2011) Gate bias stress in pentacene field-effect-transistors: charge trapping in the dielectric or semiconductor. Appl Phys Lett 99:083303View ArticleGoogle Scholar
  37. Kim J, Lee SC, Lee HS, Kim CW, Lee WH (2016) Effects of film microstructure on the bias stability of pentacene field-effect transistors. Org Electron 29:7–12View ArticleGoogle Scholar
  38. Zhang XH, Tiwari SP, Kim SJ, Kippelen B (2009) Low-voltage pentacene organic field-effect transistors with high-k HfO2 gate dielectrics and high stability under bias stress. Appl Phys Lett 95:223302View ArticleGoogle Scholar
  39. Choi HH, Lee WH, Cho K (2012) Bias-stress-induced charge trapping at polymer chain ends of polymer gate-dielectrics in organic transistors. Adv Funct Mater 22:4833–4839View ArticleGoogle Scholar
  40. She XJ, Liu J, Zhang JY, Gao X, Wang S-D (2013) Operational stability enhancement of low-voltage organic field-effect transistors based on bilayer polymer dielectrics. Appl Phys Lett 103:133303View ArticleGoogle Scholar
  41. Tardy J, Erouel M (2013) Stability of pentacene transistors under concomitant influence of water vapor and bias stress. Microelectron Reliab 53:274–278View ArticleGoogle Scholar

Copyright

© The Author(s). 2016

Advertisement