 Nano Express
 Open Access
 Published:
Atomic LayerDeposited HfAlOxBased RRAM with Low Operating Voltage for Computing InMemory Applications
Nanoscale Research Letters volume 14, Article number: 51 (2019)
Abstract
With Moore’s law closing to its physical limit, traditional von Neumann architecture is facing a challenge. It is expected that the computing inmemory architecturebased resistive random access memory (RRAM) could be a potential candidate to overcome the von Neumann bottleneck problem of traditional computers [Backus, J, Can programming be liberated from the von Neumann style?, 1977]. In this work, HfAlOxbased RRAM which is compatible with CMOS technology was fabricated by an atomic layer deposition (ALD) process. Metal Ag and TaN are selected as top electrodes (TE). Experiments show that the Ag/HfAlOx/Pt device has demonstrated advantages as a memorycomputing device because of the low set voltage (0.33~0.6 V) which means low power consumption and good uniformity. Based on a Ag/HfAlOx/Pt structure, IMP logic was implemented at high speed by applying a 100ns highfrequency lowvoltage pulse (0.3 V and 0.6 V). After two steps of IMP implementation, NAND can also be obtained.
Background
For the boundaries between storage and computing, researchers have proposed a series of research programs: highbandwidth memory, nearmemory computing, and neural compression networks. These methods can reduce the time to access the memory, but they could not solve this problem fundamentally. In order to solve this problem fundamentally, the concept of computing inmemory has gained attention worldwide. It is worth noting that a resistive random access memory (RRAM) device has attracted widespread attention as a competitive candidate for the nonvon Neumann computing device because of its capability of inmemory computing [1,2,3,4,5,6]. Computing inmemory devices act as both computing and storage units in the same circuit [7]. It was first proposed in 1971 by Chua [8]. Almost 40 years later, RRAMbased logic operation was first proposed in 2010 [9]. Since then, RRAMbased computing inmemory device has been extensively studied and many methods of implementation have been proposed [10,11,12,13,14]. But as a computing inmemory device, the most crucial feature is stability and low energy consumption. There are still many issues in this area that need to be explored. In this letter, two kinds of RRAM devices were constructed and the electrical properties were tested. In the process of implementing logic operations, stable set and reset voltages and good uniformity between devices are very important indicators.
So far, a wide variety of materials have shown RRAM behaviors, but few of them were compatible with CMOS process. The binary highk oxides HfAlOx film was deposited using atomic layer deposition (ALD). ALD is wellsuited for deposition of oxide films and over layers for various devices and applications [15] because it is based on surface saturation and precise precursor dosage is not necessary. HfAlOx could be well compatible with the traditional CMOS process and used as the dielectric layer of inmemory computing device. The Ag/HfAlOx/Pt RRAM devices were used to implement stateful logic operations. The IMP logic was regarded as one of four fundamental logic operations (OR, AND, NOT, and IMP) by Whitehead and Russell in 1910 [16]. Moreover, the NAND logic can be obtained by two steps of IMP logic. The NAND logic is known as the universal logic, which means any Boolean logics can be constructed through the NAND logic. This CMOScompatible, highspeed, and low operation voltage inmemory computing device shows an effective way to solve the traditional von Neumann structure difficulties in the future.
Methods
In this work, Ag/HfAlOx/Pt and TaN/HfAlOx/Pt devices were fabricated, respectively. The schematic is shown in Fig. 1a. First, a 70nmthin film Pt bottom electrode was deposited by physical vapor deposition (PVD) on the cleaned SiO_{2}/Si substrate. Then, a binary highk oxide HfAlOx film with a thickness of 16 nm was deposited using ALD derived from tetrakisethylmethylamino hafnium (TEMAH), trimethyl aluminum (TMA), and H_{2}O precursors at 240 °C. Finally, 50 nm Ag or TaN top electrode film was fabricated by photolithography and fabricated by PVD. With bias on top electrode and ground on bottom electrode, directcurrent measurements of the devices were performed by an Agilent B1500A semiconductor at room temperature. In addition, logic measurements were performed using an Agilent B1500A semiconductor device parameter analyzer and two semiconductor pulse generator units (SPGU).
Result and Discussion
Memory and processor are separated in a traditional von Neumann computer architecture [17]. The transfer time of data stored in memory and calculated on the computing unit greatly limits the performance of the computer. It is possible to break the limitation by operating data directly on memory. The research of computing inmemory has the potential to break this limit.
To demonstrate the logic functions, RRAM was prepared with Ag/HfAlOx/Pt and TaN/HfAlOx/Pt. The schematic is shown in Fig. 1a; two small devices together with one large device form a minimum RRAM logic IMP logic unit. Different logic can be implemented by using multiple IMP cells. The 16nm HfAlOx films grown by ALD were characterized by Xray photoemission spectroscopy (XPS). As shown in Fig. 1b, the full XPS spectra and Hf4f, Al2p, C1s, and O1s are exhibited. From the XPS results, it can be concluded that the ALD HfAlO films have successfully been obtained. Figure 2a and b exhibit the I–V bipolar switching characteristics of the Ag/HfAlOx/Pt and TaN/HfAlOx/Pt measured by an Agilent B1500A semiconductor device parameter analyzer. The sweeping voltage was applied from − 1.5 to 1.5 V (for Ag) and − 3 to 3 V (for TaN) and a reading voltage of 0.1 V at room temperature. The resistance ratio of both Ag/HfAlOx/Pt and TaN/HfAlOx/Pt structures is shown in Fig. 3a and b. A device with Ag as an upper electrode can have a resistance ratio of 103 and TaN as the upper electrode can reach 60. Both Ag and TaN top electrodes exhibit superior bipolar switching characteristics. The distribution of set and reset operation voltage is presented as histograms in Fig. 3c and d, respectively. The Ag/HfAlOx/Pt devices exhibit much lower SET voltage. The performances of the two structures are compared. The SET and RESET voltage rang of the Ag/HfAlOx/Pt devices was from 0.33 to 0.62 V and from − 1.3 to − 1.5 V and the TaN/ HfAlOx/Pt devices was from 0.8 to 1.8 V and from − 1.3 to − 2 V. After comparison, it was found that the device using Ag as the upper electrode is more suitable as a device for implementing logic due to better stability and lower operating voltage.
Moreover, the switching mechanism of the two types of structure is further expounded. The I–V curves are analyzed in Fig. 4a–d. The curves are taken in logarithmic coordinates to analyze the current status in the lowresistance state (LRS) and highresistance state (HRS) states, respectively. It is shown in Fig. 4a and b the current transportation of Ag/HfAlOx/Pt devices exhibit ohmic current during the voltage sweeping. Whether applying a forward voltage or applying a negative voltage for TaN/HfAlOx/Pt devices shown in Fig. 4c and d, quasiohmic current (slope is approximately equal to 1) is presented in the LRS, while ohmic, quasiohmic, and space charge limited current is presented in HRS at positive electric field.
The reason for this phenomenon is that the resistance change mechanism of TaN/HfAlOx/Pt devices is due to avalanching generation and recombination of the oxygen ion and oxygen vacancy dielectric layer. In Ag/HfAlOx/Pt devices, the forming and rupture of conducting filaments, thanks to the redox reactions of metallic Ag, can be driven by a much lower electric field.
In this experiment, lowresistance state (LRS) was defined as logic 1 and highresistance state (HRS) as logic 0. The test diagram of IMP logic is shown in Fig. 5a. It is implemented by two RRAM devices P and Q and one fixed load resistor. The states of P and Q are represented by p and q, respectively. IMP is performed by two simultaneous voltage pulses: Va and Vb (we defined Va > Vset > Vb and Va – Vb < Vset so that Va could program logic 0 to 1 and Va − Vb could not program logic). The principle of logic p change is due to q. If q equals 1, then p is left unchanged because the voltage drop across p is nearly Va − Vb, and if q equals 0, the p is always equals 1. The truth table for the operation q ← pIMPq is shown in Fig. 5b and the state changes of P and Q with the pulse are shown in Fig. 5c. The NAND logic can be obtained through the twostep IMP logic. The implementation of NAND logic can be done by twostep IMP logic, because of the good uniformity. NAND is considered to be a universal logic, which means it can construct any Boolean logics through topologically connected NAND gates. As illustrated in Fig. 5d, the operation was implemented in a circuit with three RRAM devices: P, Q, and S. The inputs were the values p and q which were stored in devices P and Q. In the first step of the execution logic, S is initialized to a 0 state. Then, two steps of IMP were executed:
s′ ← pIMPs (1).
s′′ ← qIMPs′ (2).
The truth tables showing the equivalence of the sequence of operations to NAND are shown in Fig. 5e.
Conclusion
In summary, two kinds of devices (Ag/HfAlOx/Pt and TaN/HfAlOx/Pt) were fabricated in this study. Both devices show superior switching characteristics. Ag/HfAlOx/Pt device has demonstrated advantages as a computing inmemory device such as CMOS compatibility, good uniformity, low operating voltage, and low power consumption. Logic was implemented through Ag/HfAlOx/Pt RRAM devices. The realization of low operation voltage computing inmemory devices provides an effective way to solve the traditional von Neumann structure difficulties in the future.
Abbreviations
 ALD:

Atomic layer deposition
 HRS:

Highresistance state
 LRS:

Lowresistance state
References
 1.
Backus, J. (2007). Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs (p. 1977). ACM
 2.
Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. nature 453(7191):80
 3.
Linn E, Rosezin R, Kügeler C, Waser R (2010) Complementary resistive switches for passive nanocrossbar memories. Nat Mater 9(5):403
 4.
Li H, Wang X, Ong ZL, Wong WF, Zhang Y, Wang P, Chen Y (2011) Performance, power, and reliability tradeoffs of STTRAM cell subject to architecturelevel requirement. IEEE Trans Magn 47(10):2356–2359
 5.
Prodromakis, T. (2013). Two centuries of memristors. In Chaos, CNN, memristors and beyond: a Festschrift for Leon Chua with DVDROM, composed by Eleonora Bilotta (pp. 508–517)
 6.
Yang Y, Mathew J, Pontarelli S, Ottavi M, Pradhan DK (2016) Complementary resistive switchbased arithmetic logic implementations using material implication. IEEE Trans Nanotechnol 15(1):94–108
 7.
Huang P, Kang J, Zhao Y, Chen S, Han R, Zhou Z et al (2016) Reconfigurable nonvolatile logic operations in resistance switching crossbar array for largescale circuits. Adv Mater 28(44):9758–9764
 8.
Chua L (1971) Memristorthe missing circuit element. IEEE Transactions on circuit theory 18(5):507–519
 9.
Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS (2010) ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290):873
 10.
Chen Q, Wang X, Wan H, Yang R (2017) A logic circuit design for perfecting memristorbased material implication. IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems 36(2):279–284
 11.
Marranghello FS, Callegaro V, Martins MG, Reis AI, Ribas RP (2015) Factored forms for memristive material implication stateful logic. IEEE J Emerg Sel Topics Circuits Syst 5(2):267–278
 12.
Sun X, Li G, Ding L, Yang N, Zhang W (2011) Unipolar memristors enable “stateful” logic operations via material implication. Appl Phys Lett 99(7):072101
 13.
Suh DI, Kil JP, Kim KW, Kim KS, Park W (2015) A single magnetic tunnel junction representing the basic logic functions—NAND, NOR, and IMP. IEEE Electron Device Letters 36(4):402–404
 14.
Kvatinsky S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC (2014) Memristorbased material implication (IMPLY) logic: design principles and methodologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22(10):2054–2066
 15.
Niinistö L, Ritala M, Leskelä M (1996) Synthesis of oxide thin films and overlayers by atomic layer epitaxy for advanced applications. Materials Science & Engineering B 41(1):23–29
 16.
Becker, O. (1962). AN Whitehead and B. Russell, Principia Mathematica
 17.
Hennessy JL, Patterson DA (2011) Computer architecture: a quantitative approach. Elsevier
Acknowledgements
This work was supported by the NSFC (61704030 and 61522404), National Science and Technology Major Project (2017ZX02315005), the Program of Shanghai Subject Chief Scientist (18XD1402800), and the Support Plans for the Youth TopNotch Talents of China.
Availability of Data and Materials
All data are fully available without restriction.
Author information
Affiliations
Contributions
ZYH prepared the HfAlObased computing inmemory devices. Then ZYH and TYW designed the test methods and assembled the test equipment of inmemory computing. HZ, PZ, and SJD revised the manuscript. LC, QQS, and DWZ supervised the whole work. All authors critically read and approved the final manuscript.
Corresponding author
Correspondence to Lin Chen.
Ethics declarations
Competing Interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Received
Accepted
Published
DOI
Keywords
 Computing inmemory
 RRAM
 Switching
 Implemented