Skip to main content

Advertisement

We're creating a new version of this page. See preview

  • Nano Express
  • Open Access

3D CoMoSe4 Nanosheet Arrays Converted Directly from Hydrothermally Processed CoMoO4 Nanosheet Arrays by Plasma-Assisted Selenization Process Toward Excellent Anode Material in Sodium-Ion Battery

Nanoscale Research Letters201914:213

https://doi.org/10.1186/s11671-019-3035-6

  • Received: 17 April 2019
  • Accepted: 30 May 2019
  • Published:

Abstract

In this work, three-dimensional (3D) CoMoSe4 nanosheet arrays on network fibers of a carbon cloth denoted as CoMoSe4@C converted directly from CoMoO4 nanosheet arrays prepared by a hydrothermal process followed by the plasma-assisted selenization at a low temperature of 450 °C as an anode for sodium-ion battery (SIB) were demonstrated for the first time. With the plasma-assisted treatment on the selenization process, oxygen (O) atoms can be replaced by selenium (Se) atoms without the degradation on morphology at a low selenization temperature of 450 °C. Owing to the high specific surface area from the well-defined 3D structure, high electron conductivity, and bi-metal electrochemical activity, the superior performance with a large sodium-ion storage of 475 mA h g−1 under 0.5–3 V potential range at 0.1 A g−1 was accomplished by using this CoMoSe4@C as the electrode. Additionally, the capacity retention was well maintained over 80 % from the second cycle, exhibiting a satisfied capacity of 301 mA h g−1 even after 50 cycles. The work delivered a new approach to prepare a binary transition metallic selenide and definitely enriches the possibilities for promising anode materials in SIBs with high performances.

Keywords

  • CoMoSe4 nanosheet arrays
  • CoMoO4 nanosheet arrays
  • Plasma-assisted selenization
  • Sodium-ion battery

Background

Rechargeable sodium-ion batteries (SIBs), benefiting from advantages of low cost and relatively high safety, have been considered as a promising alternative battery system to commercial lithium-ion batteries (LIBs) and received tremendous attention during the last decades [15]. Nevertheless, the larger ionic radius and higher molar mass of sodium ions compared with that of lithium ions lead to a sluggish electrochemical reaction for the sodium-ion diffusion, which consequently results in the unsatisfied electrochemical performances with less options on suitable electrode materials than those in LIBs [68]. Therefore, it is quite important to explore or design appropriate anode materials for SIBs.

Metal sulfides/selenides (MXs) have been demonstrated as very popular electrode material in SIBs because of their unique crystal structures and varieties in material properties [915]. Nonetheless, the large volume change in MXs during ionic extraction and insertion processes, generally resulting in structural degradation and instability of the solid electrolyte interphase, is still a serious issue. Therefore, further strategies are still needed to accommodate or buffer the material structures for practical applications [16, 17]. Recently, bimetallic sulfides/selenides, e.g., NiCo2S4, Co2Mo3Se, and CoMoS [1820], have been investigated as a promising class of electrode materials for promising energy storage and conversion devices because of their higher electrochemical activities and capacities than mono-metal sulfides/selenides, e.g., MoS2, CoSe2, NiSe2, and FeSe2 [2127]. However, in the field of SIBs, there have been few reports on the application of bimetallic selenides because of the challenge in material synthesis. Up to date, some synthetic methods and applications of bimetallic selenides in SIBs have been carried out [2830]. Among them, Co and Mo, as transition metal elements with abundant resources and high redox chemical valences [3135], are promising components as anode materials. Additionally, carbon cloth with highly textured surface and good electrical conductivity is a good substrate for electrode materials, which can enable fast electron transport and produce large electrode–electrolyte contact areas [37, 38].

In this regard, we demonstrated 3D-networked CoMoSe4 nanosheet arrays on network fibers of the carbon cloth (CoMoSe4@C) by direct chemical conversion through the plasma-assisted selenization of CoMoO4 nanosheet arrays prepared by the hydrothermal process on network fibers of the carbon cloth (CoMoO4@C) as the anode in SIBs for the first time. Interestingly, with the assistance of plasma-assisted process on selenization process, the conversion of O atoms by Se can be achieved at a low temperature of 450 °C without any morphology change. The CoMoSe4@C shows better sodium storage performance than that of the unselenized CoMoO4@C. With synergetic effects from both transition metal species, a highly reversible capacity of 475 mA h g−1 at 0.1 A g−1 and a high capacity retention of over 80% even after 50 cycles at 0.5 A g−1 were accomplished using the CoMoSe4@C composite as the electrode in SIBs. Furthermore, this composite electrode can deliver excellent rate capabilities with the discharge capacities changing from 475 to 230 mA h g−1 as current densities were stepwisely added ranging from 0.1 to 5 A g−1, exhibiting a good sodium storage property. This work developed a new pathway of synthesizing bimetallic selenides, which may be adopted in other related materials for the sodium energy storage or other applications [3943].

Experimental Section

Synthesis of CoMoO4 Nanosheet Arrays by the Hydrothermal Process

Firstly, 0.4234 g Na2MoO4·2H2O (purity ≥ 99%, Sigma-Aldrich), 0.5093 g Co(NO3)2·6H2O (purity ≥ 98%, Alfa Aesar), 0.074 g NH4F (purity ≥ 98%, Alfa Aesar), and 0.49 g CO(NH2)2 (purity ≥ 99.5%, Echo Chemical Co., Ltd.) were added to 35 mL of distilled (DI) water under constant intense stirring. Then, the mixture was transferred to the Teflon-lined stainless autoclave, containing a piece of carbon cloth (CC) (CeTech Co., Ltd., Taiwan), followed by heating at 180 °C for 12 h in an oven. After the hydrothermal growth, the as-synthesized sample was taken out and carefully cleaned, followed by the vacuum-drying at 60 °C for 12 h. Finally, the as-synthesized sample was annealed in pure argon at 300 °C for 2 h to obtain the CC coated with CoMoO4 nanosheet arrays.

Direct Conversion of CoMoSe4 Nanosheet Arrays by Plasma-Assisted Selenization Process

The plasma-assisted selenization system (Syskey Technology Ltd.) was used to selenize the as-produced CoMoO4 nanosheet arrays. The selenium heater at the top of the machine is separated from the lower sample holder to independently control the temperature of the Se source and substrate, respectively. In the synthesis process, the selenium particles were firstly placed on the selenium (Se) heater and were heated to 300 °C to generate Se vapors. At the same time, the vaporized Se gas was carried out to the substrate by a vertical flow of a mixed carrier gas containing N2/H2 gas (N2:H2 = 40:80) at the steady flow rate to maintain the amount of Se in the vapor. Subsequently, the substrate previously placed on the sample holder was heated to the reaction temperature of 450 °C. Once the substrate temperature was stable, the plasma was initiated at 250 W to ionize Se vapors into Se radials to promote the chemical reaction.

Characterization

Morphologies of as-produced materials were characterized by scanning electron microscopy (SEM) (Hitachi UHR FE-SEM SU8010). Further observations of the difference in structures before and after the plasma-assisted selenization were examined using a high-resolution transmission electron microscope (HRTEM) (JEOL, JEM-F200 CFEGTEM, 200 kV). The elemental analyses were conducted by electron energy loss spectroscopy (EELS) via HRTEM (JEOL, JEM-F200). The formation of CoMoSe4@C was examined by Raman spectroscopy (HORIBA, LabRAM, HR800) with the green laser (532 nm) excitation. The crystal structures of CoMoO4 and CoMoSe4 were then characterized by X-ray diffraction (XRD) (Ultima IV, Rigaku). The chemical bonding and the depth profile of materials were established by X-ray photoelectron spectroscopy (XPS, ULVAC-PHI 1600) facility. Electrochemical testing of the prepared CoMoSe4@C was carried out using a CR2032 coin cell, consisting of a CoMoSe4@C electrode and a sodium metal cathode separated by glass fibers. CoMoSe4@C was directly used as an anode electrode, and its corresponding weight was calculated by subtracting the weight of the carbon cloth from the CoMoSe4@C composite. The electrolyte is 1 M sodium trifluoromethanesulfonate (NaCF3SO3) dissolved in diethyleneglycol dimethylether (DEGDME). To investigate the electrochemical performance of the assembled electrodes, cyclic voltammetry (CV) was performed in 0.5–3 V potential ranges at 0.1 mV s−1 on a Bio-Logic VSP potentiostat, and the electrochemical impedance was conducted using electrochemical impedance spectroscopy (EIS) over the frequency ranges of 0.01 Hz–100 kHz. Charging/discharging measurements were conducted under 0.5–3 V on Land Battery Measurement System at room temperature.

Results and Discussion

The synthesis of 3D CoMoSe4 nanosheet arrays converted directly from hydrothermally processed CoMoO4 by the plasma-assisted selenization process is schematically shown in Scheme 1. Basically, as a proof of concept, CoMoO4 nanosheets were grown on network fibers of a carbon cloth through hydrothermal process as displayed in Scheme 1a1, followed by the plasma-assisted selenization process as displayed in Scheme 1a2, CoMoO4@C directly converted into CoMoSe4 nanosheets. It can be demonstrated that the O atoms were nearly replaced by Se atoms after the plasma-assisted selenization process (Additional file 1: Figure S1). Detailed steps of CoMoSe4 nanosheets converted directly by the plasma-assisted selenization process were mentioned in the experimental part. Figure 1 a shows a SEM image of fibers taken from a carbon cloth where the inset shows a low-magnification SEM. After a hydrothermal process, CoMoO4 nanosheet arrays with a well-established texture structure were successfully grown on the fibers of the carbon cloth denoted as CoMoO4@C as shown in Fig. 1b. Figure 1 c shows a magnified SEM image taken from Fig. 1b where the nanosheet arrays with uniform in the diameter of approximately ~ 13 μm, consisting of high-density 3D nanosheets (Fig. 1d) with the networked morphology, can be clearly observed. After the plasma-assisted selenization under a power of 250 W at 450 °C for 1 h, nanosheet structures still remain as shown in Fig. 1e. However, there are slight changes in the morphology of the individual nanosheet, with which nanograins can be found on the surface instead of the smooth surface after the plasma-assisted selenization process as shown in Fig. 1f. The EDS elemental mapping images of Co, Mo, and Se on a randomly selected composite fiber as demonstrated in Fig. 1g soundly prove the successful production of CoMoSe4 on the carbon cloth with the uniform distribution around the individual fiber. Without the plasma-assisted treatment, the CoMoO4 cannot be completely converted into CoMoSe4 under the identical condition (250 W and 450 °C) as shown in Additional file 1: Figure S2a. These characteristic resonance modes of CoMoO4 still maintain after the selenization process without the plasma-assisted treatment (blue curve in Additional file 1: Figure S2a) while the black curve in Additional file 1: Figure S2a represents characteristic resonance modes of CoMoO4. Clearly, it can be expected that the Se radicals ionized from Se atoms by plasma-assisted treatment can speed up the chemical reaction between Co, Mo, and Se to form CoMoSe4 at the lower selenization temperature.
Scheme 1
Scheme 1

Schematic diagram of the fabrication processes of 3D CoMoSe4@C through the hydrothermal reaction (a1) and followed by the plasma-assisted selenization process (a2)

Fig. 1
Fig. 1

SEM images of a pure carbon cloth, bc, d CoMoO4@C, and e, f CoMoSe4@C in different magnifications. g EDS elemental mappings of CoMoSe4@C

Furthermore, TEM results also demonstrate the nanosheet morphology in the as-prepared CoMoO4 as shown in Fig. 2a, which is consistent with SEM images. In addition, a polycrystalline feature can be found in a CoMoO4 nanosheet where small single crystals can be well recognized by high-resolution TEM image as shown in Fig. 1b, c. As displayed in Fig. 1c, spaced lattice fringes in the distance of around 0.157 nm and 0.335 nm can be measured, which can be indexed to the crystal planes of (024) and (002), confirming the phase of CoMoO4. To further confirm the phase difference between CoMoO4 and CoMoSe4, Raman results were measured as shown in Additional file 1: Figure S2b. Before the plasma-assisted selenization process, the characteristic resonance modes at 330, 817, and 930 cm−1 are measured to well confirm the formation of the CoMoO4 phase (black curve in Additional file 1: Figure S2b) [44, 45]. However, significant changes in the corresponding resonance modes can be found in the Raman spectra before and after the plasma-assisted selenization process on the CoMoO4@C, with which the resonance mode at 168 cm−1 originated from CoSe2 [46], and typical MoSe2 features with E12g and A1g modes located at 233 and 280 cm−1 verified the production of CoMoSe4 (red curve in Additional file 1: Figure S2b) [47]. The CoMoO4 and CoMoSe4 phases can be also evidenced by XRD spectra as shown in Additional file 1: Figure S3 where monoclinic CoMoO4 (JCPDS No. 21-0868), orthorhombic CoSe2 (JCPDS No. 53-0449), and hexagonal MoSe2 nanocrystals (JCPDS No. 29-0914) were confirmed, respectively. Additionally, the uniform distribution of Co, Mo, and O elements throughout the nanosheet can be confirmed by EDS elemental mapping images as shown in Fig. 2d indicating the homogeneous synthesis of the CoMoO4 after the hydrothermal process. The as-selenized CoMoSe4@C preserved the nanosheet structure, presenting the polycrystallinity as shown in Fig. 2e, f and characterized by Raman and XRD measurements (Additional file 1: Figures S2b and S3). The high-resolution TEM image as shown in Fig. 2g exhibits well-recognized lattice fringes separated by ~ 0.27 and ~ 0.65 nm, corresponding to (110) and (002) crystal planes of CoSe2 and MoSe2, respectively, confirming the successfully plasma-assisted selenization process to form the CoMoSe4. Similarly, the homogeneous transformation can be claimed with the uniform distribution of Co, Mo, and Se elements within the CoMoSe4 nanosheets as shown in Fig. 2h.
Fig. 2
Fig. 2

a A TEM image of CoMoO4 nanosheet. b, c HRTEM images of the CoMoO4 nanosheet in different magnifications. d The corresponding EELS elemental mappings of CoMoO4 nanosheet. e A TEM image of CoMoSe4 nanosheet. f, g HRTEM image of the CoMoSe4 nanosheet in different magnifications. h The corresponding EELS elemental mappings of CoMoSe4 nanosheet

In order to investigate the chemical composition of the selenized CoMoSe4, XPS measurements were carried out in the CoMoSe4@C composite, with which only Co, Mo, Se, C, and O elements can be identified within the instrumental limit as shown in Fig. 3a. Further narrow-scan spectra of Co 2p, Mo 3d, and Se 3d orbitals in both raw data and fitted curves were laid out in Fig. 3b–d. The 2p orbital-related peak of Co element splits into well-defined 2p3/2 and 2p1/2 peaks at 778.37 and 793.92 eV (Fig. 3b), suggesting that Co exists in the form of Co2+, and their satellite peaks marked as “Sat.” appeared at 780.37 and 783.52 eV, respectively [48, 49]. Two peaks at 232.25 and 229.53 eV (Fig. 3c) correspond to Mo 3d3/2 and Mo 3d5/2, indicating that Mo is in its Mo (IV) state [50, 51]. Additionally, peaks located at 54.59 and 55.46 eV in both raw data and fitted curves can be well-resolved corresponding to the Se 3d5/2 and Se 3d3/2 energies as shown in Fig. 3d [36, 52, 53]. Clearly, the peak observed at 59.64 eV is associated with SeOx, which was formed by the surface oxidation of CoMoSe4@C during sample handling [54]. The compositional analysis results show that the atomic ratio of Co:Mo:Se is about 1:0.88:3.84, indicating the stoichiometric of CoMoSe4.
Fig. 3
Fig. 3

a The wide-scan XPS spectrum and narrow-scan spectra of b Co2p, c Mo3d, and d Se3d in the composite of CoMoSe4@C

The sodium storage performance of the CoMoSe4@C anode was evaluated using coin-type half cells with the unselenized CoMoO4@C electrode for the comparison. As can be seen in the cyclic voltammogram (CV) curves of the CoMoSe4@C electrode as shown in Fig. 4a, two peaks at ~ 1.14 and 1.05 V during the first cathodic sweep can be resolved corresponding to the insertion process by Na+ ion while the two oxidation peaks at around 1.79 V and 1.86 V are related to the extraction process of the Na+ ion. Starting from the second cycles, the CV curves in this composite as the anode material exhibit overlaps with the subsequent cycle, indicating the good electrode stability. The corresponding galvanostatic charge/discharge curves as displayed in Fig. 4b are consistent with the CV results and demonstrate the stable Na+ insertion/extraction behaviors within the first five cycles except for some irreversible reactions. It should be mentioned that the fiber structure of the carbon cloth almost contributed nothing in the capacity evidenced by the cycling measurements as shown in Additional file 1: Figure S4. For the comparison, CV and charge/discharge curves of the CoMoO4@C electrode at the same measured conditions are displayed in Additional file 1: Figure S5. Note that the poor electrochemical activity in the CoMoO4@C composite as the anode for SIBs can be confirmed. Undoubtedly, the plasma-assisted selenization of CoMoO4@C is quite constructive to produce more suitable electrode materials for sodium storage.
Fig. 4
Fig. 4

a CV curves of CoMoSe4@C at 0.1 mV s−1 under 0.5–3 V versus Na/Na+. b Discharge/charge curves of the CoMoSe4@C electrode within the first five cycles at 0.1 A g−1. c Capabilities of the CoMoSe4@C and CoMoO4@C electrodes at different charging rates under 0.5 to 3 V with its corresponding Coulombic efficiency. d Cycling performances of the CoMoSe4@C and CoMoO4@C electrodes for 50 cycles at 0.5 A g−1

Additional file 1: Figure S6 shows the raw experimental and fitted Nyquist plots for CoMoSe4@C and CoMoO4@C as well as the corresponding equivalent circuit (inset of Additional file 1: Figure S6). Clearly, the fitting results confirm that the charge transfer resistance (Rct) of CoMoSe4@C and CoMoO4@C is 19 and 157 Ω, respectively. EIS results reveal the electrochemical mechanisms of improved sodium storage capability in the CoMoSe4@C composite electrode, in which the better electrical conductivity can be characterized in the plasma-assisted selenized composite to facilitate the faster Na+ insertion/extraction even at high current densities than those in the CoMoO4@C composite. Moreover, the superior rate performance in the CoMoSe4@C electrode was accomplished comparing with the CoMoO4@C as demonstrated in Fig. 4c with the current densities stepwisely increasing from 0.1 to 5 A g−1. Specifically, a high reversible capacity of 475 mA h g−1 at 0.1 A g−1 was shown by the CoMoSe4@C electrode with the contrast to only 198 mA h g−1 in the CoMoO4@C anode. As current densities are stepwisely increased from 0.1 to 0.2, 0.5, 1, 2, and 5 A g−1, reversible capacities in the CoMoSe4@C electrode dropped from 475 to 458, 371, 320, 277, and 230 mA h g−1, indicating the good rate capability. As a comparison, the discharge capacities in the CoMoO4@C anode experienced a reduction from 198 to 140, 93, 65, 45, and 26 mA h g−1, respectively. Furthermore, the similar phenomena can be found in the cycling testing results of the CoMoSe4@C and CoMoO4@C electrodes as presented in Fig. 4d. The CoMoSe4@C exhibited a better cycling stability with a high capacity of 301 mA h g−1 at 0.5 A g−1 maintained even after 50 cycles compared to 46 mA h g−1 in the CoMoO4@C electrode. Compared with the anode materials previously reported (Table 1), CoMoSe4@C composite electrode exhibits considerable reversible capacity and rate performance, thus CoMoSe4@C composite can be used as a potential electrode material for SIBs.
Table 1

Electrochemical properties of various anode materials applied as sodium-ion batteries reported in the previous literature

Materials description

Voltage range (V vs Na+/Na)

Specific capacity (mAh g−1)/current density

Cycling data (mAh g−1)/cycles/current density

Reference

MoSe2/CNT

0.001–2.5 V

382/0.2 A g−1

296/250th/1 A g−1

[31]

CoSe2@N-PGC/CNTs

0.001–3 V

482/0.2 A g−1

424/100th/0.2 A g−1

[32]

FeSe2

0.5–2.9 V

447/0.1 A g−1

372/2000th/1 A g−1

[24]

MoO2@MoSe2

0.01–3 V

1136/0.1 A g−1

520.4/400th/2 A g−1

[36]

CoSe2

0.001–3 V

521/0.1 A g−1

467/40th/0.5 A g−1

[25]

CoSe2/(NiCo)Se2

0.001–3 V

554/0.2 A g−1

497/80th/0.2 A g−1

[29]

Ni0.85Se/C

0.01–3 V

397/0.2 A g−1

390/100th/0.2 A g−1

[26]

WSe2/C

0.01–3 V

294/0.1 A g−1

270/50th/0.2 A g−1

[12]

MoSe2/Gr

0.01–3 V

432/0.1 A g−1

380/50th/0.4 A g−1

[27]

SnSe/RGO

0.01–2 V

500/0.1 A g−1

385/50th/0.5 A g−1

[13]

Sb2Se3@N-Gr

0.01–3 V

705/0.1 A g−1

548.6/50th/0.2 A g−1

[14]

VSe2/Gr

0.01–3 V

559/0.2 A g−1

632/60th/0.1 A g−1

[15]

CoMoSe4@C

0.5–3 V

475/0.1 A g−1

301/50th/0.5 A g−1

This work

Conclusions

A facile approach to prepare a binary transition metallic selenide to serve as the anode material in SIBs was demonstrated via the plasma-assisted selenization process of a binary transition metallic oxide. In this work, three-dimensional (3D) CoMoSe4 nanosheets on network fibers of a carbon cloth denoted as CoMoSe4@C directly converted from CoMoO4 nanosheets prepared by hydrothermal process on network fibers of a carbon cloth through the plasma-assisted selenization as the anode for SIBs were demonstrated for the first time. A large sodium-ion storge of 475 mA h g−1 at 0.1 A g−1 can be generated from the plasma-assisted selenized composite electrode with the capacity retention of over 80% maintained even after 50 cycles, while the discharge capacity of 230 mA h g−1 still can be obtained even at 5 A g−1. Excellent Na-ion storage capabilities benefit from its well-developed nanostructure and good electrical conductivity. The work highlights the promising application of binary transition metallic selenides as electrode materials in SIBs and the simple synthesis method which might be employed in the production of other bimetallic selenides for a variety of applications, such as powering sustainable vehicles and portable energy storage devices.

Abbreviations

3D: 

Three-dimensional

CoMoO4@C: 

3D CoMoO4 nanosheets/carbon cloth

CoMoSe4@C: 

3D CoMoSe4 nanosheets/carbon cloth

CV: 

Cyclic voltammetry

EELS: 

Electron energy loss spectroscopy

EIS: 

Electrochemical impedance spectroscopy

LIBs: 

Lithium-ion batteries

MXs: 

Metal sulfides/selenides

SEM: 

Scanning electron microscopy

SIBs: 

Sodium-ion batteries

TEM: 

Transmission electron microscopy

XPS: 

X-ray photoelectron spectroscopy

XRD: 

X-ray diffraction

Declarations

Acknowledgements

Not applicable.

Funding

This work is financially supported by the National Basic Research Program of China (Grant No.2015CB932301 and 2017YFB0404101), National Natural Science Foundation of China (Grant No. 61675173, 61505172 and U1405253), Natural Science Foundation of Fujian Province of China (Grant No.2017H6022 and 2018 J01102), and Natural Science Foundation of Guangdong Province (Grant No. 2018B030311002). In addition, this research is also supported by the Ministry of Science and Technology through Grant nos. 107-2923-E-007-002-MY3, 107-2112-M-007-030-MY3, 106-2923-E-007-006-MY2, 105-2119-M-009-009, and 107-3017-F-007-002. Y.L. Chueh greatly appreciates the use of the facilities at CNMM.

Authors’ Contributions

SZ and YFA initiated the idea and designed the experiments. SZ performed the experiments and drafted the manuscript. SCW, HJL, TYS, JHC, CHW, LL, YZC, BBX, SYT, DCW, and SSL take part in the experiments and discussed the results. YLC, JL, JYK, and JY guided the idea and the simulations and checked the figures. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Pen-Tung Sah Institute of Micro-Nano Science and Technology/Department of Physics, Xiamen University, Xiamen, 361005, Fujian, China
(2)
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
(3)
Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
(4)
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
(5)
Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, Republic of China

References

  1. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie 54:3431–3448View ArticleGoogle Scholar
  2. Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. Adv Mater 27:5343–5364View ArticleGoogle Scholar
  3. Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6:1600943View ArticleGoogle Scholar
  4. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Materi 23:947–958View ArticleGoogle Scholar
  5. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters 12:3783–3787View ArticleGoogle Scholar
  6. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240View ArticleGoogle Scholar
  7. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3c2 Mxene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6:11173–11179View ArticleGoogle Scholar
  8. Hu Z, Liu Q, Chou S-L, Dou S-X (2017) Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater 29:1700606View ArticleGoogle Scholar
  9. Chao D et al (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2d layered metal chalcogenide nanoarrays. ACS nano 10:10211–10219View ArticleGoogle Scholar
  10. Pan Y, Cheng X, Gong L, Shi L, Deng Y, Zhang H (2018) Highly reversible Na ion storage in N-doped polyhedral carbon-coated transition-metal chalcogenides by optimizing the nanostructure and surface engineering. J Mater Chem A 6:18967–18978View ArticleGoogle Scholar
  11. Zhang F, Xia C, Zhu J, Ahmed B, Liang H, Velusamy DB, Schwingenschlögl U, Alshareef HN (2016) SnSe2 2D anodes for advanced sodium ion batteries. Adv Energy Mater 6:1601188View ArticleGoogle Scholar
  12. Zhang Z, Yang X, Fu Y (2016) Nanostructured WSe2/C composites as anode materials for sodium-ion batteries. RSC Advances 6:12726–12729View ArticleGoogle Scholar
  13. Yang X, Zhang R, Chen N, Meng X, Yang P, Wang C, Zhang Y, Wei Y, Chen G, Du F (2016) Assembly of SnSe nanoparticles confined in graphene for enhanced sodium-ion storage performance. Chemistry 22:1445–1451View ArticleGoogle Scholar
  14. Zhao W, Li CM (2017) Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries. J Colloid Interface Sci 488:356–364View ArticleGoogle Scholar
  15. Wang Y, Qian B, Li H, Liu L, Chen L, Jiang H (2015) VSe2/graphene nanocomposites as anode materials for lithium-ion batteries. Mater Lett 141:35–38View ArticleGoogle Scholar
  16. Zhang Y, Liu Z, Zhao H, Du Y (2016) Mose2 nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries. RSC Advances 6:1440–1444View ArticleGoogle Scholar
  17. Yang X, Zhang Z, Fu Y, Li Q (2015) Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. Nanoscale 7:10198–10203View ArticleGoogle Scholar
  18. Zhang Z, Li Z, Yin L (2018) Hollow prism NiCo2S4 linked with interconnected reduced graphene oxide as a high performance anode material for sodium and lithium ion batteries. New J Chem 42:1467–1476View ArticleGoogle Scholar
  19. Guo Y, Yao Z, Shang C, Wang E (2017) P doped Co2Mo3Se nanosheets grown on carbon fiber cloth as an efficient hybrid catalyst for hydrogen evolution. J Mater Chem A 5:12043–12047View ArticleGoogle Scholar
  20. Dominguez N, Torres B, Barrera LA, Rincon JE, Lin Y, Chianelli RR, Ahsan MA, Noveron JC (2018) Bimetallic CoMoS composite anchored to biocarbon fibers as a high-capacity anode for Li-ionbatteries. ACS Omega 3:10243–10249View ArticleGoogle Scholar
  21. Xie X, Makaryan T, Zhao M, Van Aken KL, Gogotsi Y, Wang G (2016) MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv Energy Mater 6:1502161View ArticleGoogle Scholar
  22. Zhang K, Park M, Zhou L, Lee G-H, Li W, Kang Y-M, Chen J (2016) Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv Functional Mater 26:6728–6735View ArticleGoogle Scholar
  23. Zhu S, Li Q, Wei Q, Sun R, Liu X, An Q, Mai L (2017) NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl Mater Interfaces 9:311–316View ArticleGoogle Scholar
  24. Zhang K, Hu Z, Liu X, Tao Z, Chen J (2015) FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv Mater 27:3305–3309View ArticleGoogle Scholar
  25. Ko YN, Choi SH, Kang YC (2016) Hollow cobalt selenide microspheres: synthesis and application as anode materials for Na-ion batteries. ACS Appl Mater Interfaces 8:6449–6456View ArticleGoogle Scholar
  26. Yang X, Zhang J, Wang Z, Wang H, Zhi C, Yu DYW, Rogach AL (2018) Carbon-supported nickel selenide hollow nanowires as advanced anode materials for sodium-ion batteries. Small 14Google Scholar
  27. Zhao X, Cai W, Yang Y, Song X, Neale Z, Wang H-E, Sui J, Cao G (2018) MoSe2 Nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 47:224–234View ArticleGoogle Scholar
  28. Kim JK, Kim JH, Kang YC (2018) electrochemical properties of multicomponent oxide and selenide microspheres containing Co and Mo components with several tens of vacant nanorooms synthesized by spray pyrolysis. Chem Eng J 333:665–677View ArticleGoogle Scholar
  29. Park S-K, Kim JK, Chan Kang Y (2017) Metal–organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution. J Mater Chem A 5:18823–18830View ArticleGoogle Scholar
  30. Ali Z, Asif M, Huang X, Tang T, Hou Y (2018) Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv Mater:e1802745Google Scholar
  31. Choi SH, Kang YC (2016) Fullerene-like MoSe2 nanoparticles-embedded Cnt balls with excellent structural stability for highly reversible sodium-ion storage. Nanoscale 8:4209–4216View ArticleGoogle Scholar
  32. Park S-K, Kim JK, Kang YC (2017) Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem Eng J 328:546–555View ArticleGoogle Scholar
  33. Chang U, Lee JT, Yun JM, Lee B, Lee SW, Joh HI, Eom K, Fuller TF (2019) In Situ self-formed nanosheet Mos3/reduced graphene oxide material showing superior performance as a lithium-ion battery cathode. ACS Nano 13:1490–1498Google Scholar
  34. Alarawi A, Ramalingam V, Fu HC, Varadhan P, Yang R, He JH (2019) Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction. Opt Express 27:A352–A363View ArticleGoogle Scholar
  35. Wei R, Fang M, Dong G, Lan C, Shu L, Zhang H, Bu X, Ho JC (2018) High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl Mater Interfaces 10:7079–7086View ArticleGoogle Scholar
  36. Zhao X, Sui J, Li F, Fang H, Wang H, Li J, Cai W, Cao G (2016) Lamellar MoSe2 nanosheets embedded with MoO2 nanoparticles: novel hybrid nanostructures promoted excellent performances for lithium ion batteries. Nanoscale 8:17902–17910View ArticleGoogle Scholar
  37. Ai Y, Lou Z, Li L, Chen S, Park HS, Wang ZM, Shen G (2016) Meters-long flexible CoNiO2-nanowires@carbon-fibers based wire-supercapacitors for wearable electronics. Adv Mater Technol 1:1600142View ArticleGoogle Scholar
  38. Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Letters 12:3005–3011View ArticleGoogle Scholar
  39. Gao W, Gou W, Zhou X, Ho JC, Ma Y, Qu Y (2018) Amine-modulated/engineered interfaces of NiMo electrocatalysts for improved hydrogen evolution reaction in alkaline solutions. ACS Appl Mater Interfaces 10:1728–1733View ArticleGoogle Scholar
  40. Lan C, Zhou Z, Wei R, Ho JC (2019) Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater Today Energy 11:61–82View ArticleGoogle Scholar
  41. Le V-Q, Do T-H, Retamal JRD, Shao P-W, Lai Y-H, Wu W-W, He J-H, Chueh Y-L, Chu Y-H (2019) Van Der Waals Heteroepitaxial AZO/NiO/AZO/muscovite (ana/muscovite) transparent flexible memristor. Nano Energy 56:322–329View ArticleGoogle Scholar
  42. Ouyang W, Teng F, He J-H, Fang X (2019) Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv Funct Mater 29:1807672View ArticleGoogle Scholar
  43. Zhou Z, Lan C, Wei R, Ho JC (2019) Transparent metal-oxide nanowires and their applications in harsh electronics. J Mater Chem C 7:202–217View ArticleGoogle Scholar
  44. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381View ArticleGoogle Scholar
  45. Li M, Wang Y, Yang H, Chu PK (2017) Hierarchical CoMoO4@Co3O4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors. J Mater Chem A 5:17312–17324View ArticleGoogle Scholar
  46. Ali A, Oh W-C (2017) Ultrasonic synthesis of CoSe2-graphene-TiO2 ternary composites for high photocatalytic degradation performance. J Korean Ceram Soc 54:205–210View ArticleGoogle Scholar
  47. Wu C-T, Hu S-Y, Tiong K-K, Lee Y-C (2017) Anisotropic effects in the Raman scattering of Re-doped 2H-MoSe2 layered semiconductors. Results Physics 7:4096–4100View ArticleGoogle Scholar
  48. Sun C, Dong Q, Yang J, Dai Z, Lin J, Chen P, Huang W, Dong X (2016) Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res 9:2234–2243View ArticleGoogle Scholar
  49. Kim JK, Park GD, Kim JH, Park SK, Kang YC (2017) Rational design and synthesis of extremely efficient macroporous CoSe2-Cnt composite microspheres for hydrogen evolution reaction. Small 13Google Scholar
  50. Tang H, Dou K, Kaun C-C, Kuang Q, Yang S (2014) MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A 2:360–364View ArticleGoogle Scholar
  51. Qu B, Yu X, Chen Y, Zhu C, Li C, Yin Z, Zhang X (2015) Ultrathin MoSe2 nanosheets decorated on carbon fiber cloth as binder-free and high-performance electrocatalyst for hydrogen evolution. ACS Appl Mater Interfaces 7:14170–14175View ArticleGoogle Scholar
  52. Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y (2013) MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Letters 13:3426–3433View ArticleGoogle Scholar
  53. Park GD, Kang YC (2016) One-pot synthesis of CoSeX-RGO composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries. Chemistry 22:4140–4146View ArticleGoogle Scholar
  54. Park GD, Kim JH, Kang YC (2016) Large-scale production of spherical FeSe2-amorphous carbon composite powders as anode materials for sodium-ion batteries. Mater Charact 120:349–356View ArticleGoogle Scholar

Copyright

© The Author(s). 2019

Advertisement