Skip to main content
Account
Fig. 4 | Nanoscale Research Letters

Fig. 4

From: Atomic-Scale Characterization of Slip Deformation and Nanometric Machinability of Single-Crystal 6H-SiC

Fig. 4

Nanometric machinability under different crystal plane/orientation conditions, a the influence of anisotropy on machined depth and damage depth, b the influence of anisotropy on removal amount, wear amount and grinding ratio. 1, 2, 3, 4, 5, and 6 are the corresponding process methods \( (0001)/\left[2\overline{1}\overline{1}0\right] \), \( (0001)/\left[10\overline{1}0\right] \), \( \left(01\overline{1}0\right)/\left[2\overline{1}\overline{1}0\right] \), \( \left(01\overline{1}0\right)/\left[0001\right] \), \( \left(11\overline{2}0\right)/\left[1\overline{1}00\right] \), and \( \left(11\overline{2}0\right)/\left[0001\right] \), respectively. The damage layer depth refers to the maximum depth of the internal defects of the crystal caused by the scratching. The theoretical depth refers to the preset depth before processing. The machined depth refers to the residual depth after the scratching. The amount of removal refers to the number of atoms from which the workpiece material is removed. The amount of wear refers to the difference in the number of atoms of the abrasive grains before and after the scratching

Back to article page

Navigation