Skip to main content
Fig. 7 | Nanoscale Research Letters

Fig. 7

From: Restored microRNA-133a-3p or Depleted PSAT1 Restrains Endothelial Cell Damage-Induced Intracranial Aneurysm Via Suppressing the GSK3β/β-Catenin Pathway

Fig. 7

Overexpression of miR-133a-3p and low expression of PSAT1 decrease PSAT1, GSK3β, and β-catenin, VEGF and MMP-9 expression in IA tissues in vivo and PSAT1 is a target gene of miR-133a-3p. a Detection of miR-133a-3p, PSAT1, GSK3β, and β-catenin expression in IA tissues of rats in each group by RT-qPCR. b Protein bands of PSAT1, GSK3β, and β-catenin. c Detection of PSAT1, GSK3β, and β-catenin protein expression in IA tissues of rats in each group by western blot analysis. d Protein bands of VEGF and MMP-9. e Detection of VEGF and MMP-9 protein expression in IA tissues of rats in each group by western blot analysis. f Prediction of the target site of PSAT1 binding to the corresponding miR-133a-3p by Target Scan. g Result of dual luciferase reporter gene assay. ae, n = 12; fg, N = 3, *P < 0.05 vs. the normal group/the Wt + NC group. #P < 0.05 vs. the mimic NC group. &P < 0.05 vs. the si-NC group. +P < 0.05 vs. the miR-133a-3p mimic group. Measurement data were depicted as mean ± standard deviation, and data were assessed by one-way analysis of variance followed by Tukey’s post hoc test

Back to article page