Skip to main content
Account

Table 2 A set of parameters obtained for antibacterial activities of ZnO-based composites/dopant and different optimization

From: A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation

Methods

Bacteria’s

Precursors used

Morphological analysis

Highest ZI (mm)

Ref.

Zn

Others

SEM/TEM/HRTEM/SAED

Co-precipitation

E. coli, B. subtilis, S. aureus, S. typhi.

FeSO4.7H2O and (NiNO3)2.6H2O)

Crystalline 0.25 [110] α-Fe2O3 and 0.207 [200] NiO

25 on E. coli

[66]

Green and combustion

E. coli NCIM-5022 and S. aureus NCIM-505

Zn(NO3)2.6H2O

Cu(NO3)2.3H2O

Calotropis gigantea

10–40-nm-sized spherical and hexagonal irregular shapes

9 on E. coli

[67]

Hydrothermal bottom-up approaches

E. coli DH5α

Zn(AC)2.2H2O

Tris(dimethylamino)silane

71.7-nm-sized ZnO/SiO2 nanowires

[68]

Hydrothermal and low temperature liquid phase

S. aureus (ATCC 25923) and E. coli (ATCC 25922)

Zn(NO3)2.6H2O

Tetrabutyl titanate and Ti (TA2, China)

50–90-nm-sized nanoarray aligned rhombic prismatic shape

[69]

Sol−gel

B. subtilis, S. aureus S. mutans, E. coli, K. oxytoca, P. aeruginosa

[Zn(NO3)2

Zr(C4H9O)4

Cluster of amorphous particles

~ 7 on B. subtilis

[70]

Sol-gel

E. coli ATCC 8739 , S. paratyphi ATCC 9150, S. aureus ATCC 33862 , and L. monocytogenes ATCC 15313

Zn(NO3)2.6H2O

Titanium-(IV) butoxide, and magnesium di-tert-butoxide

~ 100-nm-sized semi globular-ovoid shape

18 on S. paratyphi

[71]

Green

E. coli, Klebsiella

Zn(NO3)2.6H2O

Mg(NO3)2.6H2O and Ricinus communis L.

Granular nanoflakes

28 mm on E. coli

[19]

Co-precipitation technique

E. coli and S. aureus

Zn(NO3)2.6H2O

Yb(NO3)3.6H2O and

Pr(NO3)3.6H2O

Highly agglomerated porous materials

31 on S. aureus

[74]

Co-precipitation

S. aureus and E. coli

Zn(NO3)2.6H2O

Er(NO3)3.6H2O and Yb(NO3)3.6H2O

Loosely packed porous morphology

21 on E. coli

[75]

Precipitation

E. coli

Zn(AC)2.2H2O

Fe(NO3)3.9H2O

ZnO nanoplates/α-Fe2O3 nanorods/Ag NPs heterostructure

[73]

Co-precipitation

E. coli and S. aureus

Zn(NO3)2·6H2O

Cu(NO3)2·3H2O and Ni(NO3)2·6H2O

Agglomerated spherical NPs

[76]

One-pot low-temperature solution

E. coli (ATCC 25922), A. baumannii (ATCC 19606), S. aureus (ATCC 25923), S. epidermidis (ATCC 12228),

Zn(NO3)2.6H2O

NiSO4.6H2O

2.0 to 3.0 μm in length with 150 to 200 nm in diameters nanoroads

24 on E. coli

[21]

Co-precipitation

E. coli, S. aureus, B. cereus, and K. pneumoniae

Zn(NO3)2.6H2O

Ni(NO3)2.6H2O

Nanorods are decorated by NPs

27 on B. cereus

[78]

Two-step solution-based technique

S. aureus

Zn(AC)2.2H2O

Sodium selenite

ZnO cross bridged Se heterojunction composite

5 cm on S. aureus

[79]

Sonochemical

E. coli or P. aeruginosa, S. aureus, and B. subtilis

Zn(NO3)2.6H2O

AgNO3 and CTMAB

2-μm-sized ZnO Nanoflowers and Ag-NPs decorated ZnO

 

[23]

Electrospinning technique

S. aureus and E. coli

Zn(NO3)2.6H2O

FeCl3

Optimizing the homogenous loading of Fe-doped ZnO on PVA

19 on S. aureus

[80]

Green

E. coli (ATCC 25922), P. aeruginosa (ATCC 27853), B. subtilis (ATCC 6633), and S. aureus (ATCC 25923).

Zn(NO3)2.6H2O

Mn(AC)2·4H2O

Melastoma malabathricum (L.)

Agglomerated spherical NPs

15 on B. subtilis

[22]

sol-gel

E. coli (CCTCC AB 204033) and S. aureus (ATCC 25923)

Zn(NO3)2.6H2O

Er(NO3)3·5H2O and sodium silicate

Porous with an irregular shape

[82]

Aqueous microwave

E. coli and S. aureus

Zn(AC)2.2H2O

Mg alloy

Crack filled morphology after UV-irradiation

[83]

Electro-deposition

S. aureus (MRSA252; ATCC)

Zn(NO3)2.6H2O

TiO2 nanotubes

∼ 4 μm length and ∼ 50 nm diameter TiO2 nanotubes

[24]

self-assembly

E. coli

Zn(AC)2.2H2O

Oleylamine

3-μm-sized spherical cluster

 
  1. AC acetate, SBET specific surface area (m2/g), pV pore volume (cm3/g), Pd pore diameter (nm), d d-spacing (nm), p crystal plane, ZI(mm) zone of inhibition in millimeter

Navigation