Skip to main content

Table 1 A summary of H2S response of metal-loaded SnO2 and CuO/SnO2 nanomaterials prepared by various methods

From: Highly Sensitive and Selective Sensing of H2S Gas Using Precipitation and Impregnation-Made CuO/SnO2 Thick Films

Materials Form Technical used Gas conc. (ppm)/Temp (°C) H2S Response Refs
3.0 mol% Ag–SnO2 Thick film Spray pyrolysis 450/100 1.38 [10]
0.1 wt% V–SnO2 Thick film Flame spray pyrolysis and spin coating 10/350 2.27 × 103 [11]
0.5 wt% Mo–SnO2 Thick film Flame spray pyrolysis and spin coating 10/250 ≈105 [12]
Sb–SnO2 nanoribbons Thin film Thermal evaporation 100/150 ≈55 [13]
0.64 at% Fe–SnO2 Thin film Rheotaxial grown and Thermal oxidation 10/225 14.5 [14]
Cu-doped SnO2 Thick film Ultrasonic spray pyrolysis 95.9/100 7.24 × 103 [15]
2mol% Cu–SnO2 Thick film Hydrothermal and drip coating 300/300 40 [16]
Cu–SnO2 nanowires Thin film Thermal evaporation 10/150 5 × 105 [17]
1 at% Cu–SnO2 Thick film Electrostatic sprayed 10/100 2.5 × 103 [18]
SnO2/CuO islands Thin film Sputtering 5/250 128 [19]
CuO-loaded SnO2 Thick film Ultrasonic spray pyrolysis 1/300 22.4 [20]
CuO/SnO2 Thin film Chemical vapour deposition 10/250 26.3 [21]
3 vol% CuO–SnO2 Thin film Pulsed laser deposition 20/140 2.7 × 104 [22]
CuO-loaded SnO2 Thin film Electrospinning 10/300 1.98 × 104 [23]
5 mol% CuO/SnO2 Thin film Co-dissolution and electrospinning 1/200 ≈23 [24]
SnO2–CuO Thin film Sputtering 20/150 8 × 103 [25]
CuO–SnO2 Thin film Pulsed laser deposition 20/100 2.3 × 103 [26]
CuO–SnO2 nanowire Thick film Thermal evaporation 20/300 809 [27]
CuO–SnO2 Thick film Precipitation/Impregnation and drop coating 50/200 6.7 [28]
20 wt% CuO/SnO2 Thick film Precipitation/Impregnation and spin coating 10/200
10/150
1.359 × 105
3.1 × 104
This work