Skip to main content
Account

Table 1 A summary of H2S response of metal-loaded SnO2 and CuO/SnO2 nanomaterials prepared by various methods

From: Highly Sensitive and Selective Sensing of H2S Gas Using Precipitation and Impregnation-Made CuO/SnO2 Thick Films

Materials

Form

Technical used

Gas conc. (ppm)/Temp (°C)

H2S Response

Refs

3.0 mol% Ag–SnO2

Thick film

Spray pyrolysis

450/100

1.38

[10]

0.1 wt% V–SnO2

Thick film

Flame spray pyrolysis and spin coating

10/350

2.27 × 103

[11]

0.5 wt% Mo–SnO2

Thick film

Flame spray pyrolysis and spin coating

10/250

≈105

[12]

Sb–SnO2 nanoribbons

Thin film

Thermal evaporation

100/150

≈55

[13]

0.64 at% Fe–SnO2

Thin film

Rheotaxial grown and Thermal oxidation

10/225

14.5

[14]

Cu-doped SnO2

Thick film

Ultrasonic spray pyrolysis

95.9/100

7.24 × 103

[15]

2mol% Cu–SnO2

Thick film

Hydrothermal and drip coating

300/300

40

[16]

Cu–SnO2 nanowires

Thin film

Thermal evaporation

10/150

5 × 105

[17]

1 at% Cu–SnO2

Thick film

Electrostatic sprayed

10/100

2.5 × 103

[18]

SnO2/CuO islands

Thin film

Sputtering

5/250

128

[19]

CuO-loaded SnO2

Thick film

Ultrasonic spray pyrolysis

1/300

22.4

[20]

CuO/SnO2

Thin film

Chemical vapour deposition

10/250

26.3

[21]

3 vol% CuO–SnO2

Thin film

Pulsed laser deposition

20/140

2.7 × 104

[22]

CuO-loaded SnO2

Thin film

Electrospinning

10/300

1.98 × 104

[23]

5 mol% CuO/SnO2

Thin film

Co-dissolution and electrospinning

1/200

≈23

[24]

SnO2–CuO

Thin film

Sputtering

20/150

8 × 103

[25]

CuO–SnO2

Thin film

Pulsed laser deposition

20/100

2.3 × 103

[26]

CuO–SnO2 nanowire

Thick film

Thermal evaporation

20/300

809

[27]

CuO–SnO2

Thick film

Precipitation/Impregnation and drop coating

50/200

6.7

[28]

20 wt% CuO/SnO2

Thick film

Precipitation/Impregnation and spin coating

10/200

10/150

1.359 × 105

3.1 × 104

This work

Navigation