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Abstract

To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect
established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching
properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory
(RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed.
In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM
devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in
the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics
simulation model.
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Background
Recently, various non-volatile random access memory
(NvRAM) such as magnetic random access memory
(MRAM), ferroelectric random access memory (FeRAM),
phrase change memory (PCM), and resistive random ac-
cess memory (RRAM) were widely investigated and dis-
cussed for applications in portable electronic products
which consisted of low power consumption IC [1], non-
volatile memory [2-6], and TFT LCD display [7-10]. To
overcome the technical and physical limitation issues of
conventional charge storage-based memories [11-18], the
resistive random access memory (RRAM) device which
consisted of the oxide-based layer sandwiched by two
electrodes was a great potential candidate for the next-
generation non-volatile memory because of its superior
properties such as low cost, simple structure, fast oper-
ation speed, low operation power, and non-destructive
readout properties [19-42].
In our previous report, the resistive switching stability

and reliability of RRAM device can be improved using a
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high/low permittivity bilayer structure [43]. Because the
permittivity of porous SiO2 film is lower than that of
SiO2 film, the zirconium metal doped into SiO2 (Zr:
SiO2) thin film fabricated by co-sputtering technology
and the porous SiO2 buffer layer prepared by inductively
coupled plasma (ICP) treatment were executed to form
Zr:SiO2/porous SiO2 RRAM devices in this study. In
addition, the resistive switching behaviors of the Zr:SiO2

RRAM devices using the bilayer structure were im-
proved and investigated by a space electric field concen-
trated effect.
Methods
To generate a space electric field concentrated effect in
RRAM devices, the porous SiO2 buffer layer in the bi-
layer Zr:SiO2/porous SiO2 structure was proposed. The
patterned TiN/Ti/SiO2/Si substrate was obtained by
standard deposition and etching process; after which,
1 μm× 1 μm via holes were formed. After that, the C:
SiO2 film was prepared by co-depositing with the pure
SiO2 and carbon targets, and the porous SiO2 thin film
(about 6 nm) was formed by ICP O2 plasma technology.
Then, the Zr:SiO2 thin film (about 20 nm) was deposited
on the porous SiO2 thin film by co-sputtering with the
pure SiO2 and zirconium targets. The sputtering power
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Figure 2 Current–voltage curves and the resistive switching
characteristics of Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 RRAM
devices. The schematic configuration of the Zr:SiO2 RRAM and
bilayer Zr:SiO2/porous SiO2 RRAM in the inset of the figure.
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was fixed with rf power 200 W and direct current (DC)
power 10 W for silicon dioxide and zirconium targets,
respectively. A Pt electrode of 200-nm thickness was
deposited on all samples by DC magnetron sputtering.
Finally, all electrical devices were fabricated through
lithography and lift-off techniques. Besides, the Fourier
transform infrared spectroscopy (FTIR) was used to
analyze the chemical composition and bonding of the
Zr:SiO2 thin films, and the entire electrical measure-
ments of devices with the Pt electrode were performed
using Agilent B1500 semiconductor parameter analyzer
(Santa Clara, CA, USA).

Results and discussion
To verify the porous SiO2 layer generated and formed,
the FTIR spectra of the non-treated and treated C:SiO2

thin film prepared by the oxygen plasma treatment was
compared and showed in Figure 1. It was clearly ob-
served that the absorption of anti-symmetric stretch
mode of Si-O-Si bonding was at 1,064 cm−1 in the non-
treated and treated C:SiO2 thin film by oxygen plasma
treatment. In addition, the C = C bonding at 2,367 cm−1,
C:SiO2 coupling OH bonding at 3,656 cm−1, C-O bond-
ing, and C-C bonding from 1,250 to 1,740 cm−1 were
found. This result implicated that the porous SiO2 thin
film was formed by the chemical reaction between car-
bon and oxygen plasma treatment.
The forming process for the compliance current of

1 μA was required to activate all of the single-layer Zr:
SiO2 and bilayer Zr:SiO2/porous SiO2 thin film RRAM
devices. For Zr:SiO2 RRAM devices, the sweeping volt-
age was applied on TiN electrode with the grounded Pt
electrode. Figure 2 shows the resistive switching charac-
teristics of the single-layer Zr:SiO2 and the bilayer Zr:
SiO2/porous SiO2 RRAM devices, respectively. The
Figure 1 Comparison of FTIR spectra of the C:SiO2 thin film
before and after oxygen plasma treatment.
single-layer Zr:SiO2 and the bilayer Zr:SiO2/porous
SiO2 RRAM device structure were also shown in the
inset of Figure 2. At the reading voltage of 0.1 V, the op-
eration current of the LRS and HRS in Zr:SiO2 RRAM
devices using the porous SiO2 buffer layer was smaller
than that of others. A space electric field concentrated
effect was testified to cause the operation current
lowing of the RRAM devices using the porous SiO2 buf-
fer layer.
In order to further discuss the resistive switching

mechanism in single-layer Zr:SiO2 and bilayer Zr:SiO2/
porous SiO2 RRAM devices, the conduction mechanism
of current–voltage (I-V) curves in LRS and HRS were
analyzed to discuss the carrier transport in the switch-
ing layer in Figures 3 and 4. The carrier transport of the
LRS in Zr:SiO2 RRAM devices dominated by ohmic
Figure 3 Carrier transport analyzed for LRS and HRS of the Zr:
SiO2 RRAM by the curve fitting. The carrier transport analyzed in
conduction mechanism for LRS and HRS of the single-layer Zr:SiO2

RRAM devices by the curve fitting.



Figure 4 Carrier transport and I-V plots. (a) The carrier transport analyzed in conduction mechanism for LRS and HRS of the single bilayer
Zr:SiO2/porous SiO2 RRAM devices by the curve fitting. (b) In (I-V), (c) In (I-V1/2), and (d) In (I-V) plots.
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conduction mechanism is shown in the left inset of
Figure 3. The result revealed that the conductive fila-
ment formed by the defect is induced by the zirconium
atoms as the current flows through the Zr:SiO2 film. As
shown in the right inset of Figure 3, the carrier transport
Figure 5 Electric field simulation in LRS and HRS for Pt/Zr:SiO2/porou
in HRS of Zr:SiO2 RRAM was dominated by Pool-Frenkel
emission, which resulted from the thermal emission of
trapped electrons in the Zr:SiO2 film. However, for the bi-
layer Zr:SiO2/porous SiO2 structure, the current mechan-
ism of the LRS in Zr:SiO2 RRAM devices was dominated
s SiO2/TiN RRAM devices.
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by the space charge limited current (SCLC) conduction
(Figure 4b). Additionally, the current conduction mechan-
ism of the HRS in Zr:SiO2/porous SiO2 RRAM devices
was transferred from Schottky emission to SCLC conduc-
tion in Figure 4c,d. These results indicated that the fila-
ment is connected to the pore of porous SiO2 film after
the forming process and the SCLC conduction mechan-
ism is caused by an electric field concentrated effect.
To clarify and discuss the SCLC conduction mechan-

ism in bilayer Zr:SiO2/porous SiO2 RRAM devices, the
COMSOL Multiphysics simulation model was employed
to analyze the distribution of electric field concentrated
effect. Figure 5 shows the distribution of the electric
field in the bilayer Zr:SiO2/porous SiO2 RRAM devices
for LRS and HRS. A high density of electric field exists
in and around the area of the pore in porous SiO2 film,
which confirms the electric field concentrating capability
of nanopores. Thus, during the set process, the metal
conduction filament has an inclination to form towards
the direction of the pore, and the conduction of the elec-
tron was dominated by the SCLC conduction in the por-
ous SiO2 film.

Conclusion
In conclusion, a space electric field concentrated effect
was demonstrated to cause the operation current lowing
for the Zr:SiO2 RRAM devices. In addition, the single-
layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 were pre-
pared to investigate the resistive switching characteristics
of RRAM devices. Compared with the conduction mech-
anism of the bilayer Zr:SiO2/porous SiO2 RRAM with
single-layer Zr:SiO2 RRAM, the conduction mechanism
of the LRS was transferred from ohmic to SCLC conduc-
tion mechanism. Besides, the conduction mechanism of
the HRS was transferred from Pool-Frenkel emission to
Schottky emission at low field and dominated by SCLC
at high field. Through a space electric field concentrated
effect, the SCLC conduction of the Zr:SiO2 RRAM de-
vices using the porous SiO2 buffer layer was explained
and discussed by the COMSOL Multiphysics simulation
model.
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