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Abstract

A rugate filter based on nanoporous anodic alumina was fabricated using an innovative sinusoidal current profile
with small current variation. The resulting structure consisted of highly parallel pores with modulations of the
pore diameter along the pore axis and with no branching. The effect of the period time and the pore widening
post-treatment was studied. From reflectance measurements, it was seen that the position of the reflection band
can be tuned by adjusting the period time and the width by pore-widening post-treatments. We tested one of
the rugate filters by infiltrating the structure with EtOH and water in order to evaluate its sensing capabilities. This
method allows the fabrication of complex in-depth modulated nanoporous anodic alumina structures that open

control; Sensing

up the possibility of new kinds of alumina-based optical sensing devices.
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Background

Rugate filters are one-dimensional photonic crystals based
on a smooth variation of the refractive index along
the depth of the structure which results in a photonic
bandgap (PBG) [1]. Unlike distributed Bragg reflectors
(DBR), rugate filters display a single reflectivity band
without harmonics or sidelobes. Thanks to this feature,
rugate filters with complex optical response and multiple
PBG can be fabricated by superimposing multiple refract-
ive index profiles [1-3]. However, these filters are difficult
to fabricate because the smooth variation of the refractive
index is challenging and requires complex equipment.
An interesting method for fabricating rugate filters is
by means of electrochemically etched materials such as
porous silicon (pSi). In porous materials, the refractive
index depends on the porosity of the layer. Thus, pSi
rugate filters have been fabricated thanks to the ease
of porosity modulation by adjusting the electrochemical
etching conditions [4-6]. Thanks to the porous nature
of the resulting pSi rugate filters, these optical devices
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have been exploited for the development of highly sensi-
tive detectors [7-12].

Another interesting material for the development of
highly sensitive optical sensors is nanoporous anodic alu-
mina (NAA) [13-21]. NAA is a nanostructured material
obtained from the electrochemical etching of high-purity
aluminum foils that has attracted much interest in recent
years thanks to its unique structural properties. NAA
consists of highly uniform and parallel pores with no
branching. The interpore distance can be easily tuned by
adjusting the voltage applied during the electrochemical
etching, and the pore diameter can be adjusted by wet
chemical etching in phosphoric acid [22]. Moreover,
honeycomb structures of self-ordered pores can be
obtained by the two-step anodization procedure [23].
However, porosity modulation with NAA has been
challenging.

One of the first techniques used for pore modulation
during the anodization was pulse anodization [24-26].
This technique consisted in combining mild and hard
anodization regimes by means of step voltage variations.
This allowed great changes in the pore diameter
along the pore axis, but despite the fact that no optical
characterization was performed, the combination of mild
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and hard anodization regimes would result in abrupt
refractive index variations which are incompatible with
the development of rugate filters. Another technique
is cyclic anodization. This method was used to fabricate
DBRs by applying a periodic voltage which resulted in
well-defined layers with branched pores [27-29]. Lately,
NAA photonic crystals fabricated with current control
techniques have been reported [30,31]. However, these
structures also showed branched pores.

In this work, we report a current control technique
for the fabrication of NAA rugate filters. We have char-
acterized the resulting structure and analyzed its optical
response as a function of porosity by applying subsequent
pore-widening processes. Finally, we tested the sensing
capabilities of the NAA rugate filters by real-time moni-
toring the shift of the central wavelength in ethanol and
deionized water.

Methods

Materials

Aluminum (Al) foil (thickness =250 um, purity = 99.999%)
was purchased from Goodfellow (Huntingdon, UK). Oxalic
acid (H>C50,), ethanol (C,Hs;OH), acetone ((CHs),CO),
perchloric acid (HCIO,), hydrochloric acid (HCI), and cop-
per chloride (CuCl) were purchased from Sigma-Aldrich
(Madrid, Spain). Double deionized (DI) water (18.6 MQ,
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Purelab Option-Q, Elga, Marlow, UK) was used for all the
solutions unless otherwise specified.

Fabrication

Al substrates were first degreased in acetone and further
cleaned with ethanol (EtOH) and DI water and dried
under a stream of air. Prior to anodization, Al substrates
were electropolished in a mixture of EtOH and perchloric
acid (HCIOy) 4:1 (v/v) at 20 V and 5°C for 4 min. During
the electropolishing procedure, the stirring direction
was alternated every 60 s. Then, the electropolished Al
substrates were cleaned in EtOH and DI water and
dried under a stream of air. Subsequently, the anodization
of the aluminum in H,C50,4 0.3 M at 5°C was carried out
by applying an apodized current profile consisting of a
DC component of 2.05 mA cm > with a superimposed
alternating current (AC) sinusoidal component with
variable amplitude. The amplitude of this AC compo-
nent was modulated with a half-wave sinus profile with
1.45 mA cm™? of maximum amplitude (see Figure 1a).
We investigated the influence of the period (7) of the
sinusoidal component on the optical characteristics
of the obtained structures. Afterwards, different pore-
widening post-treatments in H3;PO, 5% wt. at 35°C
were performed for f,, =0, 5, 10, and 15 min in order
to study the effect of porosity on the characteristics of
the reflectance bands of the NAA rugate filters. Finally,
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Figure 1 Characteristic current and voltage evolution during the fabrication of an apodized NAA rugate filter. (a) Full experiment and
(b) magnification of the region with maximum amplitude of current profile.
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view of the structure.

Figure 2 Structural characterization. Cross section SEM
micrograph of a NAA rugate filter anodized for 300 cycles with an

apodized sinusoidal current profile with a period of T=200 s and a
pore-widening post-treatment of t,, = 15 min. Inset shows the top
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Al bulk was selectively dissolved using a HCl/CuCl-sat-
urated solution.

Characterization

Scanning electron microscope (SEM) micrographs used for
structural characterization of the NAA rugate filters were
taken on SEM FEI Quanta 600 (FEI, Hillsboro, OR, USA).
The optical characterization of the rugate filters was per-
formed on a PerkinElmer UV/vis/NIR Lambda 950 spec-
trophotometer (PerkinElmer, Waltham, MA, USA). For
the reflectance measurements, the spectrophotometer was
coupled with the universal reflectance accessory (URA).

Sensing experiment

Real-time measurements for the sensing experiments
were performed in a custom-made flow cell. Reflectance
spectra of the NAA rugate filter were obtained using a
halogen light source and a CCD spectrometer (Avantes,
Apeldoorn, The Netherlands). Light was directed to the
surface at a normal angle through a fiber optic cable
consisting of six illuminating waveguides and one read-
ing waveguide coupled to an optical lens which focused
the light on top of the NAA rugate filter. The light
reflected by the rugate filter sample was collected by the
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Figure 3 Central wavelength calibration of NAA rugate filters. (a) Reflectance spectra of NAA rugate filters anodized with a period of T= 200,
250, and 300 s for 50 cycles and (b) central wavelength position of the resonance band as a function of period time. The squares represent the
central position of the resonance band, and the error bars correspond to the bandwidth.
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Figure 4 Reflectance and transmittance characterization of the NAA rugate filters. (a) Reflectance and (b) transmittance spectra of NAA
rugate filters anodized for 300 cycles, with an apodized sinusoidal current profile with a period time of 7= 200 s.

reading waveguide and directed to the CCD spectrometer,
which recorded a spectrum every 10 s.

Results and discussion
Structural characterization
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would allow the fabrication of self-ordered rugate filters. Figure 5 Sensing results. Real-time measurement of a NAA rugate

The analysis of the cross-sectional micrograph of the NAA filter in a flow-cell where EtOH, deionized water, and EtOH were serially
flushed in to the chamber.

rugate filter reveals pore modulation without branching
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along the pore axis. This is due to the varying current
profile (Figure 2) which produced a porosity gradient
and, thus, a varying refractive index in depth.

Central wavelength calibration

In order to calibrate the position of the reflectance band,
we fabricated three sets of samples with periods of 7'= 200,
250, and 300 s (Figure 3a). By increasing the period time,
we increased the period of the pore diameter variations
and, thus, tuned the position of the reflectance band.
Another option would be to shift the current to higher
values. However, we discarded this solution because of
the higher potentials achieved which were beyond the
self-ordering regime. As depicted in Figure 3b, shifting
the period time allows linear tuning of the reflectance
band at a rate of 2.4 nm s '. Furthermore, the spectra
show how longer periods result in wider bands.

Effect of porosity

In order to assess the effect of porosity on the NAA
rugate filter, we fabricated four sets of samples with a
period of T=200 s and applied a pore-widening post-
treatment for 0, 5, 10, and 15 min. The remaining Al
was selectively dissolved to ensure that the reflection
observed was only due to the rugate structure. Figure 4a
shows the resulting reflectance spectra. The spectra
displayed a well-defined band without sidelobes as we
expected from the apodization of the current profile.
We observed that the pore-widening treatment resulted
in a blueshift of the reflection band as well as a lower
reflection below and above the band. This is the result
of the partial dissolution of the alumina, which decreases
the overall refractive index of the rugate filter. A more
interesting fact is how the band widened after the pore-
widening treatment. This broadening is related to the
refractive index contrast of the rugate filter (An). The
higher the An, the wider the band. This is in good
agreement with our previous reported results for NAA
obtained with periodic anodization voltages [7,14]. Ana-
lysis of the transmittance measurements (Figure 4b)
showed how the pore-widening post-treatment led to less
steep edges in the stop band, possibly due to scattering
and absorption of the alumina.

Real-time sensing

As a proof of the possible application of this structure, we
performed a sensing experiment in a flow cell and moni-
tored the position of the reflectance band in real-time for
a sample fabricated with a period time of 7'=200 s, a total
of 300 cycles, and a pore-widening post-treatment
of t, =5 min (Figure 5). After acquiring a reference of
the sample in air, we flowed EtOH at a rate of 1 mL min™".
Then, we flowed deionized water and, finally, EtOH again
in order to prove the repeatability of the measurement. The
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results presented in Figure 5 show a highly stable signal
with no significant drift within the time range and a very
low noise of about 0.04 nm. The NAA rugate filter was able
to distinguish between two liquids with a similar refractive
index (Myater = 1.333, npion = 1.362) with a sensitivity of
48.8 nm/refractive index unit (RIU). Moreover, when EtOH
was reintroduced into the chamber, the position of the
reflection band returned to the same value of the first
EtOH infiltration, indicating the high reproducibility of
the results.

Conclusions

NAA rugate filters were fabricated using a current con-
trol method based on a sinusoidal current profile with a
maximum amplitude of just 1.45 mA cm™2 Thanks to
this small current peak-to-peak value, the voltage was
contained within 40 + 5 V. The position of the band can
be accurately tuned by varying the period time of the
current profile. This process allows the fabrication of
highly reflective bands with just 50 periods. Moreover,
for as-produced rugate filters, the reflectance bands were
narrow (less than 30 nm) which is an important feature
for the development of highly sensitive chemical and
biochemical sensors based on the monitorization of the
position of the reflectance band. As a proof of concept,
we performed a sensing experiment in a flow cell in
order to determine the sensing possibilities of the struc-
ture and found out that changes in refractive index of
0.031 can be readily monitored with high sensitivity
(48.8 nm/RIU) and low noise level (<0.04 nm).
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