Skip to main content

Unbound states in quantum heterostructures

Abstract

We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.

[191]

References

  1. 1.

    Bimberg D, Grundmann M, Ledentsov NN: Quantum Dot Heterostructures. John Wiley and Sons, New York; 1999.

    Google Scholar 

  2. 2.

    O. Stier, M. Grundmann, D. Bimberg. Phys. Rev. B59, 5688 (1999). See also: O. Stier. Electron ic and optical properties of quantum dots and wires (Berlin Studies in Solid State Physics, Verlag Wissenshaft und Technik, Berlin 2001) and references cited therein

    Article  Google Scholar 

  3. 3.

    A.J. Williamson, A. Zunger. Phys. Rev. B59, 15819 (1999); B61, 1978 (2000)

    Article  Google Scholar 

  4. 4.

    A. Zunger. Phys. Stat. Solidi A190, 467 (2002) and references cited therein

    Article  Google Scholar 

  5. 5.

    Lee S, Jönsson L, Wilkins JW, Bryant GW, Klimeck G: Phys. Rev.. 2001, B63: 195318.

    Article  Google Scholar 

  6. 6.

    Cohen-Tannoudji C, Diu B, Laloe F: Quantum Mechanics. John Wiley and Sons, New York; 1977.

    Google Scholar 

  7. 7.

    Schiff LI: Quantum Mechanics. Mc Graw-Hill, Singapore; 1968.

    Google Scholar 

  8. 8.

    Bohm D: Quantum Theory. Prentice–Hall, Englewood Cliffs, N. J., USA; 1951.

    Google Scholar 

  9. 9.

    C. Beenacker and van Houten. Solid State Phys.44, 1 (1991) and references cited therein

    Google Scholar 

  10. 10.

    Jackson JD: Classical Electrodynamics. John Wiley and Sons, New York; 1975.

    Google Scholar 

  11. 11.

    Brum JA, Bastard G: Phys. Rev. 1986, B33: 1420.

    Article  Google Scholar 

  12. 12.

    Bastard G: Phys. Rev.. 1984, B30: 3547.

    Article  Google Scholar 

  13. 13.

    J. Shah (ed.), Hot Carriers in Semiconductor Nanostructures: Physics and Applications (Academic Press, London, 1992)

    Google Scholar 

  14. 14.

    Yu PY, Cardona M: Fundamentals of Semiconductors: Physics and materials properties. Springer-Verlag, Berlin; 1999.

    Google Scholar 

  15. 15.

    B.K. Ridley, Quantum Processes in Semiconductors (Clarendon Press Oxford, 1988)

    Google Scholar 

  16. 16.

    Babiker M, Ridley BK: Superlatt. Microstruct.. 1986, 2: 287. COI number [1:CAS:528:DyaL2sXkvVOkt70%3D] 10.1016/0749-6036(86)90034-0

    Article  Google Scholar 

  17. 17.

    Morris D, Deveaud B, Regreny A, Auvray P: Phys. Rev.. 1993, B47: 6819.

    Article  Google Scholar 

  18. 18.

    Sotirelis P, Hess K: Phys. Rev.. 1994, B49: 7543.

    Article  Google Scholar 

  19. 19.

    Fricke M, Lorke A, Kotthaus JP, Madeiros-Ribeiro R, Petroff PM: Europhys. Lett.. 1996, 36: 197. COI number [1:CAS:528:DyaK28XmslGjsLg%3D] 10.1209/epl/i1996-00210-x

    Article  Google Scholar 

  20. 20.

    Lelong Ph, Bastard G: Solid State Commun.. 1996, 98: 819. COI number [1:CAS:528:DyaK28XlsFaqsrg%3D] 10.1016/0038-1098(96)00024-5

    Article  Google Scholar 

  21. 21.

    D. P Phuong, PhD thesis, Paris 6 University (2005)

  22. 22.

    A. Vasanelli, PhD thesis, Paris 6 University (2002)

  23. 23.

    Buczko R, Bassani F: Phys. Rev.. 1996, B54: 2667.

    Article  Google Scholar 

  24. 24.

    Magnusdottir I: Modeling of Phonon- and Coulomb-Mediated Capture Processes in Quantum Dots. COM Technical University of Denmark, Lingby, Denmark; 2003.

    Google Scholar 

  25. 25.

    Magnusdottir I, Uskov AV, Bischoff S, Tromborg B: J. Mork, J. Appl. Phys.. 2002, 92: 5982. COI number [1:CAS:528:DC%2BD38XosVeitbk%3D] 10.1063/1.1512694

    Article  Google Scholar 

  26. 26.

    Ferreira R, Bastard G: Appl. Phys. Lett.. 1999, 74: 2818. COI number [1:CAS:528:DyaK1MXivV2nur8%3D] 10.1063/1.124024

    Article  Google Scholar 

  27. 27.

    Gündogdu K, Hall KC, Boggess TF, Deppe GD, Shchekin OB: Appl. Phys. Lett.. 2004, 85: 4570. 10.1063/1.1815371

    Article  Google Scholar 

  28. 28.

    Trumm S, Besseli W, Krenner HJ, Schuh D, Bichler M, Finley JJ, Betz M: Appl. Phys. Lett.. 2005, 87: 153113. 10.1063/1.2103399

    Article  Google Scholar 

  29. 29.

    Verzelen O, Hameau S, Guldner Y, Gérard JM, Ferreira R, Bastard G: Jpn J. Appl. Phys.. 2001, 40: 1941. COI number [1:CAS:528:DC%2BD3MXjtVahs7s%3D] 10.1143/JJAP.40.1941

    Article  Google Scholar 

  30. 30.

    Hameau S, Guldner Y, Verzelen O, Ferreira R, Bastard G, Zeman J, Lemaitre A, Gérard JM: Phys. Rev. Lett.. 1999, 83: 4152. COI number [1:CAS:528:DyaK1MXnsVejtL8%3D] 10.1103/PhysRevLett.83.4152

    Article  Google Scholar 

  31. 31.

    Magnusdottir I, Uskov AV, Ferreira R, Bastard G, Mork J, Tromborg B: Appl. Phys. Lett.. 2002, 18: 4318. 10.1063/1.1526911

    Article  Google Scholar 

  32. 32.

    Glanemann M, Axt VM, Kuhn T: Phys. Rev.. 2005, B72: 045354.

    Article  Google Scholar 

  33. 33.

    Chu L, Zrenner A, Böhm G, Abstreiter G: Appl. Phys. Lett.. 1999, 75: 3599. COI number [1:CAS:528:DyaK1MXnsFyrsLY%3D] 10.1063/1.125400

    Article  Google Scholar 

  34. 34.

    N. Horiguchi, T. Futatsugi, Y. Nakata, N. Yokoyama, T. Mankad, P.M. Petroff: Jpn. J. Appl. Phys. Part I. 1999, 38: 2559. 10.1143/JJAP.38.2559

    Article  Google Scholar 

  35. 35.

    Liu HC, Gao M, McCaffrey J, Wasilewski ZR, Faffard S: Appl. Phys. Lett.. 2001, 78: 79. COI number [1:CAS:528:DC%2BD3MXmvVel] 10.1063/1.1337649

    Article  Google Scholar 

  36. 36.

    Tang SF, Lin SY, Lee SC: Appl. Phys. Lett.. 2001, 78: 2428. COI number [1:CAS:528:DC%2BD3MXislKlurg%3D] 10.1063/1.1362201

    Article  Google Scholar 

  37. 37.

    Rebohle L, Schrey F, Hofer S, Strasser G, Unterrainer K: Appl. Phys. Lett.. 2002, 81: 2079. COI number [1:CAS:528:DC%2BD38XmvVShtbY%3D] 10.1063/1.1506419

    Article  Google Scholar 

  38. 38.

    Maimon S, Finkman E, Bahir G, Schacham SE, Garcia JM, Petroff PM: Appl. Phys. Lett.. 1998, 73: 2003. COI number [1:CAS:528:DyaK1cXmtFKhtLs%3D] 10.1063/1.122349

    Article  Google Scholar 

  39. 39.

    Sauvage S, Boucaud P, Brunhes T, Immer V, Finkman E, Gérard JM: Appl. Phys. Lett.. 2001, 78: 2327. COI number [1:CAS:528:DC%2BD3MXislKlt7g%3D] 10.1063/1.1365411

    Article  Google Scholar 

  40. 40.

    Ye Z, Campbell JC, Chen Z, Kim ET, Madhukar A: J. Appl. Phys.. 2002, 92: 7462. COI number [1:CAS:528:DC%2BD38XptFGgsb0%3D] 10.1063/1.1517750

    Article  Google Scholar 

  41. 41.

    Chu L, Arzberger M, Böhm G, Abstreiter G: J. Appl. Phys.. 1999, 85: 2355. COI number [1:CAS:528:DyaK1MXmvFGjtw%3D%3D] 10.1063/1.369549

    Article  Google Scholar 

  42. 42.

    Kim JS, Yu PW, Leem JY, Jeon M, Noh SK, Lee JI, Kim GH, Kang SK, Kim JS, Kim SG: J. Appl. Phys.. 2002, 91: 5055. COI number [1:CAS:528:DC%2BD38XisVCjsrk%3D] 10.1063/1.1464230

    Article  Google Scholar 

  43. 43.

    Berryman KW, Lyon SA, Segev M: Appl. Phys. Lett.. 1997, 70: 1861. COI number [1:CAS:528:DyaK2sXisFKhtrs%3D] 10.1063/1.118714

    Article  Google Scholar 

  44. 44.

    Maximov MV, Tsatsul’nokov AF, Volovik BV, Bedarev DA, Egorov AY, Zhukov AE, Kovsh AR, Bert NA, Ustinov VM, Kop’ev PS, Alferov ZI, Ledentsov NN, Bimberg D, Soshnikov IP, Werner P: Appl. Phys. Lett.. 1999, 75: 2347. COI number [1:CAS:528:DyaK1MXmsVens7k%3D] 10.1063/1.125010

    Article  Google Scholar 

  45. 45.

    Phillips J, Kamath K, Bhattacharya P: Appl. Phys. Lett.. 1998, 72: 2020. COI number [1:CAS:528:DyaK1cXisValtb4%3D] 10.1063/1.121252

    Article  Google Scholar 

  46. 46.

    Aslan B, Liu HC, Korkusinski M, Cheng SJ, Hawrylak P: Appl. Phys. Lett.. 2003, 82: 630. COI number [1:CAS:528:DC%2BD3sXmsVWitA%3D%3D] 10.1063/1.1540728

    Article  Google Scholar 

  47. 47.

    Finkman E, Maimon S, Immer V, Bahir G, Schacham SE, Fossard F, Julien FH, Brault J, Gendry M: Phys. Rev. B. 2001, 63: 045323. 10.1103/PhysRevB.63.045323

    Article  Google Scholar 

  48. 48.

    Kim ET, Madhukar A, Ye Z, Campbell JC: Appl. Phys. Lett.. 1999, 74: 3277.

    Google Scholar 

  49. 49.

    Lee SW, Hirakawa K, Shimada Y: Appl. Phys. Lett.. 1999, 75: 1428. COI number [1:CAS:528:DyaK1MXlsV2lsbs%3D] 10.1063/1.124715

    Article  Google Scholar 

  50. 50.

    Lelong Ph, Lee SW, Hirakawa K, Sakaki H: Physica E. 2000, 7: 174. COI number [1:CAS:528:DC%2BD3cXisFKgt78%3D] 10.1016/S1386-9477(99)00315-X

    Article  Google Scholar 

  51. 51.

    Levine BF: J. Appl. Phys.. 1993, 74: R1. COI number [1:CAS:528:DyaK2cXhslOrsw%3D%3D] 10.1063/1.354252

    Article  Google Scholar 

  52. 52.

    Schrey FF, Rebohle L, Müller T, Strasser G, Unterrainer K, N’guyen DP, Regnault N, Ferreira R, Bastard G: Phys. Rev. B. 2005, 72: 155310. 10.1103/PhysRevB.72.155310

    Article  Google Scholar 

  53. 53.

    N’guyen DP, Regnault N, Ferreira R, Bastard G: Phys. Rev. B. 2005, 71: 245329. 10.1103/PhysRevB.71.245329

    Article  Google Scholar 

  54. 54.

    (D. Bouwmeester, A. Ekert, A. Zeilinger (eds). The Physics of Quantum Information (Springer Verlag, Berlin 2000)

    Google Scholar 

  55. 55.

    F. Rossi (ed.), Semiconductor Macroatoms: Basic Physics and Quantum-device Applications (Imperial College Press, London, 2005)

    Google Scholar 

  56. 56.

    Uskov AV, MCInerney J, Adler F, Schweizer H: Appl. Phys. Lett.. 1998, 72: 58. COI number [1:CAS:528:DyaK1cXhvFGmuw%3D%3D] 10.1063/1.120643

    Article  Google Scholar 

  57. 57.

    Magnusdottir I, Uskov AV, Bischoff S, Mork J: Phys. Rev.. 2003, B67: 205326.

    Article  Google Scholar 

  58. 58.

    Bockelmann U, Egeler T: Phys. Rev.. 1992, B46: 15574.

    Article  Google Scholar 

  59. 59.

    Efros AL, Kharchenko VA, Rosen M: Solid State Commun.. 1995, B93: 281.

    Article  Google Scholar 

  60. 60.

    Bockelmann U, Bastard G: Phys. Rev.. 1990, B42: 8947.

    Article  Google Scholar 

  61. 61.

    Toda Y, Mariwaki O, Nishioka M, Arakawa Y: Phys. Rev. Lett.. 1999, 82: 4114. COI number [1:CAS:528:DyaK1MXjtF2gu7k%3D] 10.1103/PhysRevLett.82.4114

    Article  Google Scholar 

  62. 62.

    Htoon H, Kulik D, Baklenov O, Holmes AL, Takagahara T, Shih CK: Phys. Rev.. 2001, B63: 241303.

    Article  Google Scholar 

  63. 63.

    C. Kammerer, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, A. Lemaitre, J.M. Gérard, Phys. Rev. B65, 33313 (2001).

    Article  Google Scholar 

  64. 64.

    Oulton R, Finley JJ, Tartakowski AI, Mowbray DJ, Skolnick MS, Hopkinson M, Vasanelli A, Ferreira R, Bastard G: Phys. Rev.. 2003, B68: 235301.

    Article  Google Scholar 

  65. 65.

    Bogaart EW, Haverkort JEM, Mano T, van Lippen T, Nötzel R, Wolter JH: Phys. Rev.. 2005, B72: 195301.

    Article  Google Scholar 

  66. 66.

    Benisty H, Sottomayor-Torres CM, Weisbuch C: Phys. Rev.. 1991, B44: 10945.

    Article  Google Scholar 

  67. 67.

    Vasanelli A, Ferreira R, Bastard G: Phys. Rev. Lett.. 2002, 89: 216804. COI number [1:STN:280:DC%2BD38notlChsQ%3D%3D] 10.1103/PhysRevLett.89.216804

    Article  Google Scholar 

  68. 68.

    Verzelen O, Ferreira R, Bastard G: Phys. Rev. Lett.. 2002, 88: 146803. COI number [1:STN:280:DC%2BD383hvV2gsA%3D%3D] 10.1103/PhysRevLett.88.146803

    Article  Google Scholar 

  69. 69.

    Fomin VM, Gladilin VN, Devreese JT, Pokatilov EP, Balaban SN, Klimin SN: Phys. Rev. B. 1998, 57: 2415. COI number [1:CAS:528:DyaK1cXlsVGhtg%3D%3D] 10.1103/PhysRevB.57.2415

    Article  Google Scholar 

  70. 70.

    Besombes L, Kheng K, Marsal L, Mariette H: Phys. Rev.. 2001, B63: 155307.

    Article  Google Scholar 

  71. 71.

    Vagov A, Axt VM, Kuhn T: Phys. Rev.. 2002, B66: 165312.

    Article  Google Scholar 

  72. 72.

    Wetzler R, Wacker A, Schöll E: J. Appl. Phys.. 2004, 95: 7966. COI number [1:CAS:528:DC%2BD2cXks1ejur8%3D] 10.1063/1.1739284

    Article  Google Scholar 

  73. 73.

    Nielsen TR, Gartner P, Jahnke F: Phys. Rev.. 2004, B69: 235314.

    Article  Google Scholar 

  74. 74.

    Nilsson HH, Zhang J-Z, Galbraith I: Phys. Rev.. 2005, B72: 205331.

    Article  Google Scholar 

  75. 75.

    D. Chaney, M. Roy and P. A. Maksym, in Quantum Dots: Fundamentals, Applications, and Frontiers, ed. by B. Joyce (Springer Verlag Berlin 2005)

    Google Scholar 

  76. 76.

    Adler F, Geiger M, Bauknecht A, Scholz F, Schweizer H, Pilkhun MH, Ohnesorge B, Forchel A: J. Appl. Phys.. 1996, 80: 4019. COI number [1:CAS:528:DyaK28XmtVKkt7w%3D] 10.1063/1.363361

    Article  Google Scholar 

  77. 77.

    Ohnesorge B, Albrecht M, Oshinowo J, Forchel A, Arakawa Y: Phys. Rev.. 1996, B54: 11532.

    Article  Google Scholar 

  78. 78.

    Grosse S, Sandmann JHH, von Plessen G, Feldmann J, Lipsanen H, Sopanen M, Tulkki J: J. Ahopelto. Phys. Rev.. 1997, B55: 4473. 10.1103/PhysRevB.55.4473

    Article  Google Scholar 

  79. 79.

    Marcinkevicius S, Leon R: Phys. Rev.. 1999, B59: 4630.

    Article  Google Scholar 

  80. 80.

    Sandmann JHH, Grosse S, von Plessen G, Feldmann J, Hayes G, Phillips R, Lipsanen H, Sopanen M, Aholpeto A: Phys. Stat. Sol.. 1997, A164: 421. 10.1002/1521-396X(199711)164:1<421::AID-PSSA421>3.0.CO;2-C

    Article  Google Scholar 

  81. 81.

    Morris D, Perret N, Faffard S: Appl. Phys. Lett.. 1999, 75: 3593. COI number [1:CAS:528:DyaK1MXnsFyrsLg%3D] 10.1063/1.125398

    Article  Google Scholar 

  82. 82.

    Raymond S, Hinzer K, Fafard S, Merz JL: Phys. Rev.. 2000, B61: 16331.

    Article  Google Scholar 

  83. 83.

    Delerue C, Lannoo M: Nanostructures Theory and Modelling. Nanoscience and Technology, Springer-Verlag Berlin; 2004.

    Google Scholar 

  84. 84.

    I.P. Marko, A.D. Andreev, A.R. Adams, R. Krebs, J.P. Reithmaier, A. Forchel, Elect. Lett. 39, No. 1 (2003)

    Article  Google Scholar 

  85. 85.

    Warburton RJ, Urbaszek B, McGhee EJ, Schulhauser C, Hogele A, Karrai K, Govorov AO, Garcia JM, Gerardot BD, Petroff PM: Nature (London). 2004, 427: 135. 10.1038/nature02109

    Article  Google Scholar 

  86. 86.

    Urbaszek B, McGhee EJ, Krüger M, Warburton RJ, Karrai K, Amand T, Gerardot BD, Petroff PM, Garcia JM: Phys. Rev.. 2004, B69: 035304.

    Article  Google Scholar 

  87. 87.

    Bödefeld MC, Warburton RJ, Karrai K, Kotthaus JP, Madeiros-Ribeiro G, Petrofff PM: Appl. Phys. Lett.. 1999, 74: 1839. 10.1063/1.123686

    Article  Google Scholar 

  88. 88.

    Wojs A, Hawrilack P: Phys. Rev.. 1997, B55: 13066.

    Article  Google Scholar 

  89. 89.

    Govorov AO, Warburton RJ, Karrai K: Phys. Rev.. 2003, B67: 241307.

    Article  Google Scholar 

  90. 90.

    Helmes RW, Sindel M, Borda L, Van Delft J: Phys. Rev.. 2005, B72: 125301.

    Article  Google Scholar 

  91. 91.

    Smith JM, Dalgarno PA, Warburton RJ, Govorov AO, Karrai K, Gerardot BD, Petroff PM: Phys. Rev. Lett. 2005, 94: 197402. COI number [1:STN:280:DC%2BD2MvisFaksA%3D%3D] 10.1103/PhysRevLett.94.197402

    Article  Google Scholar 

Download references

Acknowledgments

The LPA-ENS is “Laboratoire associé au CNRS et aux Universités Pierre et Marie Curie et Denis Diderot”. One of us (GB) would like to thank Profs. H. Sakaki, Y. Arakawa and K. Hirakawa for their hospitality at the IIS-Tokyo where part of this review was written and for enlightening discussions. A number of colleagues have helped us to investigate more thoroughly the QD continuum. We acknowledge Profs. Y. Guldner, G. Strasser and K. Unterrainer, Drs. G. Cassabois, S. Hameau, N. Regnault, Ph. Roussignol and L.A. de Vaulchier for numerous insights on InAs QDs. We are much indebted to Drs. I. Favero, C. Kammerer, Ph. Lelong, A. Vasanelli, I. Magnusdottir, O. Verzelen, N. D. Phuong, R. Oulton and F. F. Schrey for their active participation to the work reported here.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Ferreira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferreira, R., Bastard, G. Unbound states in quantum heterostructures. Nanoscale Res Lett 1, 120 (2006). https://doi.org/10.1007/s11671-006-9000-1

Download citation

Keywords

  • Virtual bound states
  • Quantum Dots
  • Quantum Wells
  • Decoherence
  • Auger effect
  • Photodetectors