Skip to main content

Gold nanowires and the effect of impurities


Metal nanowires and in particular gold nanowires have received a great deal of attention in the past few years. Experiments on gold nanowires have prompted theory and simulation to help answer questions posed by these studies. Here we present results of computer simulations for the formation, evolution and breaking of very thin Au nanowires. We also discuss the influence of contaminants, such as atoms and small molecules, and their effect on the structural and mechanical properties of these nanowires.



  1. 1.

    Landman U, et al.: Phys. Rev. Lett.. 1996, 77: 1362. COI number [1:CAS:528:DyaK28XltVejtr4%3D] 10.1103/PhysRevLett.77.1362

    Article  Google Scholar 

  2. 2.

    Muller CJ, Ruiteenbeek JM, de Jongh LJ: Phys. Rev. Lett.. 1992, 69: 140. COI number [1:CAS:528:DyaK38XkvVSrur8%3D] 10.1103/PhysRevLett.69.140

    Article  Google Scholar 

  3. 3.

    Ohnishi H, Kondo Y, Takayanagi K: Nature. 1998, 395: 780. COI number [1:CAS:528:DyaK1cXmvFOmsLk%3D] 10.1038/27399

    Article  Google Scholar 

  4. 4.

    Rodrigues V, Ugarte D: Phys. Rev. B. 2001, 63: 073405. 10.1103/PhysRevB.63.073405

    Article  Google Scholar 

  5. 5.

    Landman U, et al.: Science. 1990, 248: 454. COI number [1:CAS:528:DyaK3cXkt12rtbY%3D] 10.1126/science.248.4954.454

    Article  Google Scholar 

  6. 6.

    Gulseren O, Ercolessi F, Tosatti E: Phys. Rev. Lett.. 1998, 80: 3775. COI number [1:CAS:528:DyaK1cXisVGrtb8%3D] 10.1103/PhysRevLett.80.3775

    Article  Google Scholar 

  7. 7.

    Hohenberg P, Kohn W: Phys. Rev.. 1964, 136: 864B. 10.1103/PhysRev.136.B864

    Article  Google Scholar 

  8. 8.

    Kohn W: Rev. Mod. Phys.. 1999, 71: 1253. COI number [1:CAS:528:DC%2BD3cXkslWhsw%3D%3D] 10.1103/RevModPhys.71.1253

    Article  Google Scholar 

  9. 9.

    Mehl MJ, Papaconstantopoulos DA: Phys. Rev. B. 1996, 54: 4519. COI number [1:CAS:528:DyaK28Xlt1aitL8%3D] 10.1103/PhysRevB.54.4519

    Article  Google Scholar 

  10. 10.

    Kirchhoff F, et al.: Phys. Rev. B. 2001, 63: 195101. 10.1103/PhysRevB.63.195101

    Article  Google Scholar 

  11. 11.

    da Silva EZ, da Silva AJR, Fazzio A: Phys. Rev. Lett.. 2001, 87: 256102. COI number [1:STN:280:DC%2BD3MnptlCmsQ%3D%3D] 10.1103/PhysRevLett.87.256102

    Article  Google Scholar 

  12. 12.

    P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, 10441 (1996); D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  13. 13.

    Kohn W, Sham LJ: Phys. Rev.. 1965, 140: 1133A. 10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  14. 14.

    Troullier N, Martins JL: Phys. Rev. B. 1991, 43: 1993. COI number [1:CAS:528:DyaK3MXovVyktw%3D%3D] 10.1103/PhysRevB.43.1993

    Article  Google Scholar 

  15. 15.

    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976). For the pure gold nanowire, the Au–Au maximum distance changed by less than 0.03 Å when the number of k-points was changed from 1 to 8

    Article  Google Scholar 

  16. 16.

    Perdew J, Burke K, Ernzerhof M: Phys. Rev. Lett.. 1996, 77: 3865. COI number [1:CAS:528:DyaK28XmsVCgsbs%3D] 10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  17. 17.

    Artacho E, Sánchez-Portal D, Ordejón P, Garcia A, Soler JM: Phys. Status Solidi B. 1999, 215: 809. COI number [1:CAS:528:DyaK1MXlvFOrtLY%3D] 10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0

    Article  Google Scholar 

  18. 18.

    Rubio-Bollinger G, Bahn SR, Agrait N, Jacobsen KW, Vieira S: Phys. Rev. Lett.. 2001, 87: 26101. 10.1103/PhysRevLett.87.026101

    Article  Google Scholar 

  19. 19.

    G. Kresse, J. Hafner, Phys. Rev. B 47, R558 (1993); G. Kresse, J. Furthmu¨ ller, Phys. Rev. B 54, 11169 (1996)

    Article  Google Scholar 

  20. 20.

    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  Google Scholar 

  21. 21.

    Vanderbilt D: Phys. Rev. B. 1990, 41: 7892. 10.1103/PhysRevB.41.7892

    Article  Google Scholar 

  22. 22.

    da Silva EZ, Novaes FD, da Silva AJR, Fazzio A: Phys. Rev. B. 2004, 69: 115411. 10.1103/PhysRevB.69.115411

    Article  Google Scholar 

  23. 23.

    da Silva EZ, da Silva AJR, Fazzio A: Comput. Mat. Sci.. 2004,30(1–2):73. COI number [1:CAS:528:DC%2BD2cXjtlCjtL0%3D] 10.1016/j.commatsci.2004.01.011

    Article  Google Scholar 

  24. 24.

    Sanchez A, Abbet S, Heiz AU, Schneider WD, Häkkinen H, Barnett RN, Landman U: J. Phys. Chem. A. 1999, 103: 9573. COI number [1:CAS:528:DyaK1MXntFalurc%3D] 10.1021/jp9935992

    Article  Google Scholar 

  25. 25.

    Häkkinen H, Abbet S, Sanchez A, Heiz AU, Landman U: Angew. Chem. Int. Ed.. 2003, 42: 1297. 10.1002/anie.200390334

    Article  Google Scholar 

  26. 26.

    Häkkinen H, Moseler M, Landman U: Phys. Rev. Lett.. 2002, 89: 33401. 10.1103/PhysRevLett.89.033401

    Article  Google Scholar 

  27. 27.

    Li CZ, Sha H, Tao NJ: Phys. Rev. B. 1998, 58: 6775. COI number [1:CAS:528:DyaK1cXmtVantbc%3D] 10.1103/PhysRevB.58.6775

    Article  Google Scholar 

  28. 28.

    Li CZ, He X, Beogozi A, Bunch JS, Tao NJ: J. Appl. Phys. Lett.. 2000, 76: 1333. COI number [1:CAS:528:DC%2BD3cXhsV2htbw%3D] 10.1063/1.126025

    Article  Google Scholar 

  29. 29.

    Häkkinen H, Barnett RN, Scherbakov AG, Landman U: J. Phys. Chem. B. 1999, 103: 8814. 10.1021/jp992787p

    Article  Google Scholar 

  30. 30.

    Novaes FD, da Silva EZ, da Silva AJR, Fazzio A: Phys. Rev. Lett.. 2003, 90: 036101. 10.1103/PhysRevLett.90.036101

    Article  Google Scholar 

  31. 31.

    Rodrigues V, Ugarte D: Phys. Rev. B. 2001, 63: 073405. 10.1103/PhysRevB.63.073405

    Article  Google Scholar 

  32. 32.

    Smit RHM, Noat Y, Untiedt C, Lang N, Van Hemert M, van Ruitembeek JM: Nature. 2002, 419: 906. COI number [1:CAS:528:DC%2BD38Xot1Kltbs%3D] 10.1038/nature01103

    Article  Google Scholar 

  33. 33.

    Csonka Sz, Halbritter A, Mihaly G, Jurdik E, Shiklyarevskii OI, Speller O, van Kempen H: Phys. Rev. Lett.. 2003, 90: 116803. 10.1103/PhysRevLett.90.116803

    Article  Google Scholar 

  34. 34.

    Novaes FD, da Silva AJR, Fazzio A, da Silva EZ: Appl. Phys. A. 2005, 81: 1551. COI number [1:CAS:528:DC%2BD2MXhtFChsrfO] 10.1007/s00339-005-3394-y

    Article  Google Scholar 

  35. 35.

    Zahai H, Boggavarapu B, Wang L: J. Chem Phys.. 2004, 121: 8231. 10.1063/1.1802491

    Article  Google Scholar 

  36. 36.

    Legoas SB, Rodrigues V, Ugarte D, Galvão DS: Phys. Rev. Lett.. 2004, 93: 216103. 10.1103/PhysRevLett.93.216103

    Article  Google Scholar 

  37. 37.

    Bahn SR, Lopez N, Norskov JK, Jacobsen KW: Phys. Rev. B. 2002, 66: 081405. 10.1103/PhysRevB.66.081405

    Article  Google Scholar 

  38. 38.

    Novaes FD, da Silva AJR, da Silva EZ, Fazzio A: Phys. Rev. Lett.. 2006, 96: 016104. 10.1103/PhysRevLett.96.016104

    Article  Google Scholar 

  39. 39.

    Thijssen WHA, Marjenburgh D, Bremmer RH, van Ruitenbeek JM: Phys. Rev. Lett.. 2006, 96: 026806. COI number [1:STN:280:DC%2BD287gtFKgtg%3D%3D] 10.1103/PhysRevLett.96.026806

    Article  Google Scholar 

  40. 40.

    Kruger D, Fucks H, Rousseau R, Markx D, Parrinello M: Phys. Rev. Lett.. 2002, 89: 186402. 10.1103/PhysRevLett.89.186402

    Article  Google Scholar 

Download references


The TBMD code was developed by Florian Kirchhoff as part of the Computational Chemistry and Materials Science Computational Technology Area (CCM CTA)’s contribution to the U.S. Department of Defense CHSSI program. The simulations were performed at the National Center for High Performance Computing in São Paulo (CENAPAD-SP). We acknowledge support from FAPESP and CNPq;. We would like to acknowledge fruitful discussions with D. Ugarte and V. Rodrigues. e-mail address:

Author information



Corresponding author

Correspondence to Edison Z. da Silva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

da Silva, E.Z., Novaes, F.D., da Silva, A.J. et al. Gold nanowires and the effect of impurities. Nanoscale Res Lett 1, 91 (2006).

Download citation


  • 71.15.-m
  • 71.15.Fv
  • 71.15.Nc