Skip to main content

Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles


We report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt) nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.


(See supplementary material 1)


  1. Wang GF, Van Hove MA, Ross PN, Baskes MI: Prog. Surf. Sci.. 2005, 79: 28. COI number [1:CAS:528:DC%2BD2MXht1Shu7nP]

    Google Scholar 

  2. Hsu PJ, Lai SK: J. Chem. Phys.. 2006, 124: 44711. COI number [1:STN:280:DC%2BD28%2Fns1SgtQ%3D%3D], 10.1063/1.2147159

    Article  Google Scholar 

  3. Haruta M: Nature. 2005, 437: 1098. COI number [1:CAS:528:DC%2BD2MXhtFaht7fN], 10.1038/4371098a

    Article  Google Scholar 

  4. (a) J. Luo, M.M. Maye, V. Petkov, N.N. Kariuki, L. Wang, P.Njoki, D. Mott, Y. Lin, C.J. Zhong, Chem. Mater. 17, 3086(2005) (b) Catalysis by Metals and Alloys, V. Ponec and G.C. Bond, (Ed.) Elsevier, 1995a

  5. Kim CS, Korzeniewski C: Anal. Chem.. 1997, 69: 2349. COI number [1:CAS:528:DyaK2sXjsVOitrg%3D], 10.1021/ac961306k

    Article  Google Scholar 

  6. Chen MS, Kumar D, Yi C-W, Goodman DW: Science. 2005, 310: 291. COI number [1:CAS:528:DC%2BD2MXhtV2hurrL], 10.1126/science.1115800

    Article  Google Scholar 

  7. Mihut C, Descorme C, Duprez D, Amiridis M: J. Catal.. 2002, 212: 125. COI number [1:CAS:528:DC%2BD38XovFShsrc%3D], 10.1006/jcat.2002.3770

    Article  Google Scholar 

  8. Lang H, Maldonado S, Stevenson KJ, Chandler BD: J. Am. Chem. Soc.. 2004, 126: 12949. COI number [1:CAS:528:DC%2BD2cXnslGqt7o%3D], 10.1021/ja046542o

    Article  Google Scholar 

  9. Luo J, Jones VW, Maye MM, Han L, Kariuki NN, Zhong CJ: J. Am. Chem. Soc.. 2002, 124: 13988. COI number [1:CAS:528:DC%2BD38XotlGjsr4%3D], 10.1021/ja028285y

    Article  Google Scholar 

  10. Luo J, Njoki P, Lin Y, Wang L, Mott D, Zhong CJ: Electrochem. Comm.. 2006, 8: 581. COI number [1:CAS:528:DC%2BD28XjtFSksLw%3D], 10.1016/j.elecom.2006.02.001

    Article  Google Scholar 

  11. Luo J, Njoki P, Lin Y, Mott D, Wang L, Zhong CJ: Langmuir. 2006, 22: 2892. COI number [1:CAS:528:DC%2BD28Xhtleru7w%3D], 10.1021/la0529557

    Article  Google Scholar 

  12. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R.J.Whyman, Chem. Soc. Chem. Commun., 1994, 801

  13. Hostetler MJ, Zhong CJ, Yen BKH, Anderegg J, Gross SM, Evans ND, Porter MD, Murray RW: J. Am. Chem. Soc.. 1998, 120: 9396. COI number [1:CAS:528:DyaK1cXls12nu7c%3D], 10.1021/ja981454n

    Article  Google Scholar 

  14. Meier DC, Goodman DW: J. Am. Chem. Soc.. 2004, 126: 1892. COI number [1:CAS:528:DC%2BD2cXmtFalug%3D%3D], 10.1021/ja030359y

    Article  Google Scholar 

  15. J.E. Bailie, G.J. Hutchings, Chem. Commun. 12151, (1999)

  16. Pedersen MØ, Helveg S, Ruban A, Stensgaard I, Laegsgaard E, NØrskov JK, Besenbacher F: Surf. Sci.. 1999, 426: 395. COI number [1:CAS:528:DyaK1MXktFCit70%3D], 10.1016/S0039-6028(99)00385-4

    Article  Google Scholar 

  17. Sachtler JWA, Somorjai GA: J. Catal.. 1983, 81: 77. COI number [1:CAS:528:DyaL3sXkt1WrtLY%3D], 10.1016/0021-9517(83)90148-3

    Article  Google Scholar 

  18. Ge Q, Song C, Wang L: Comp. Mater. Sci.. 2006, 35: 247. COI number [1:CAS:528:DC%2BD2MXht1Oitr3E], 10.1016/j.commatsci.2005.05.003

    Article  Google Scholar 

  19. Song C, Ge Q, Wang L: J. Phys. Chem. B. 2005, 109: 22341. COI number [1:CAS:528:DC%2BD2MXhtFOisLjP], 10.1021/jp0546709

    Article  Google Scholar 

Download references


This work was supported in part by the National Science Foundation (CHE 0316322), the Petroleum Research Fund administered by the American Chemical Society (40253-AC5M), and the GROW Program of World Gold Council. We also thank Dr. H. R. Naslund for DCP-AES analysis, and Dr. V. Petkov for XRD analysis.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chuan-Jian Zhong.

Electronic supplementary material


Electronic Supplementary Material: Supplementary material is available to authorised users in the online version of this article at (DOC 117 KB)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Mott, D., Luo, J., Smith, A. et al. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles. Nanoscale Res Lett 2, 12 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Gold-Platinum nanoparticles
  • Nanocrystal alloy
  • Surface binding sites
  • Bimetallic composition