Skip to main content

Multiscale modeling and simulation of nanotube-based torsional oscillators

Abstract

In this paper, we propose the first numerical study of nanotube-based torsional oscillators via developing a new multiscale model. The edge-to-edge technique was employed in this multiscale method to couple the molecular model, i.e., nanotubes, and the continuum model, i.e., the metal paddle. Without losing accuracy, the metal paddle was treated as the rigid body in the continuum model. Torsional oscillators containing (10,0) nanotubes were mainly studied. We considered various initial angles of twist to depict linear/nonlinear characteristics of torsional oscillators. Furthermore, effects of vacancy defects and temperature on mechanisms of nanotube-based torsional oscillators were discussed.

[114]

References

  1. 1.

    Iijima S: Nature. 1991, 354: 56. COI number [1:CAS:528:DyaK38Xmt1Ojtg%3D%3D] 10.1038/354056a0

    Article  Google Scholar 

  2. 2.

    Popov VN: Mater. Sci. Eng. R. 2004, 43: 61. 10.1016/j.mser.2003.10.001

    Article  Google Scholar 

  3. 3.

    Kim P, Lieber CM: Science. 1999, 286: 2148. COI number [1:CAS:528:DyaK1MXotFGrtrY%3D] 10.1126/science.286.5447.2148

    Article  Google Scholar 

  4. 4.

    Srivastava D: Nanotechnology. 1997, 8: 186. COI number [1:CAS:528:DyaK1cXjtVejtQ%3D%3D] 10.1088/0957-4484/8/4/005

    Article  Google Scholar 

  5. 5.

    Kang JW, Hwang HJ: Nanotechnology. 2004, 15: 1633. COI number [1:CAS:528:DC%2BD2MXhsV2luw%3D%3D] 10.1088/0957-4484/15/11/045

    Article  Google Scholar 

  6. 6.

    Xiao SP, Andersen D, Han R, Hou WY: Int. J. Theo. Comput. Nano.. 2006, 3: 143.

    Google Scholar 

  7. 7.

    Williams PA, Papadakis SJ, Patel AM, Falvo MR, Washburn S, Superfine R: Phys. Rev. Lett.. 2002, 89: 255502. COI number [1:STN:280:DC%2BD38jitl2ntw%3D%3D] 10.1103/PhysRevLett.89.255502

    Article  Google Scholar 

  8. 8.

    Williams PA, Papadakis SJ, Patel AM, Falvo MR, Washburn S, Superfine R: Phys. Rev. Lett.. 2003, 82: 805. COI number [1:CAS:528:DC%2BD3sXotlSrsw%3D%3D]

    Google Scholar 

  9. 9.

    Papadakis SJ, Hall AR, Williams PA, Vicci L, Falvo MR, Superfine R, Washburn S: Phys. Rev. Lett.. 2004, 93: 146101. COI number [1:STN:280:DC%2BD2crlsVShtg%3D%3D] 10.1103/PhysRevLett.93.146101

    Article  Google Scholar 

  10. 10.

    Xiao SP, Belytschko T: Comp. Meth. Appl. Mech. Engrg.. 2004, 193: 1645. 10.1016/j.cma.2003.12.053

    Article  Google Scholar 

  11. 11.

    Belytschko T, Xiao SP: Int. J. Mult. Comput. Engrg.. 2003, 1: 115. 10.1615/IntJMultCompEng.v1.i1.100

    Article  Google Scholar 

  12. 12.

    Belytschko T, Xiao SP, Schatz G, Ruoff R: Phys. Rev. B. 2002, 65: 235430. 10.1103/PhysRevB.65.235430

    Article  Google Scholar 

  13. 13.

    Mielke SL, Troya D, Zhang SL, Li JL, Xiao SP, Car R, Ruoff RS, Schatz GC, Belytschko T: Chem. Phys. Lett.. 2004, 390: 413. COI number [1:CAS:528:DC%2BD2cXktVaitr4%3D] 10.1016/j.cplett.2004.04.054

    Article  Google Scholar 

  14. 14.

    Hoover WG: Phys. Rev. A. 1985, 31: 1695. 10.1103/PhysRevA.31.1695

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Army Research Office (Contract: # W911NF-06-C-0140) and the National Science Foundation (Grant # 0630153).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaoping Xiao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, S., Hou, W. Multiscale modeling and simulation of nanotube-based torsional oscillators. Nanoscale Res Lett 2, 54 (2007). https://doi.org/10.1007/s11671-006-9030-8

Download citation

Keywords

  • Nanotube
  • Torsional oscillator
  • Multiscale
  • Vacancy defects
  • Temperature