Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia


A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.


Solid acids and superacids have attracted great interest due to their potential applications in many areas of the chemical industry, ranging from petrochemicals to fine chemical production [15]. One such example of a strong solid acid is sulphated zirconia, probably first reported in the patent literature [6] then further exemplified [7] almost two decades later. This material has shown remarkable catalytic activity for a range of reactions which are not catalysed by conventional solid catalysts [1, 8, 9]. Examples of such reactions include the skeletal isomerisation of alkanes [10], the alkylation of alkanes by alkenes [11], and the low-temperature cracking of polyolefins [12] and, in the presence of metal dopants, the activation (Pt) of methane [13] and (either alone or promoted by Fe or Mn) ethane [14], to name a few.

Numerous methods exist for the preparation of sulphated zirconia materials. Conventional synthetic methods include the impregnation of zirconium hydroxide with ammonium sulphate or sulphuric acid followed by calcination in air [10, 11, 14, 15], the calcination of zirconium sulfates [16, 17] and sol-gel co-precipitation [15]. Sulphated zirconias prepared by such methods and calcined at 500°C to 650°C have mesoporous structures with surface areas in the range of 70 to 190 m2/g. The synthesis of mesoporous zirconia using long-chained ammonium halides as the template affords a mesoporous phase of structured zirconium hydroxides with surface areas ranging between 520 and 670 m2/g; however, these structures are unstable above 500°C, with the mesoporous framework collapsing in the absence of the template [1820]. Addition of dilute sulphuric acid to the material has been shown to stabilise the mesoporous structure up to temperatures of 700°C and delay the onset of crystallisation [21]. Knowles and Hudson [22] have reported the preparation of mesoporous zirconia using alkyltrimethylammonium halides (alkyl = C n , n = 8, 10, 12, 14, 16, 18) and, after careful drying and calcination at 450°C, obtained materials with surface areas in the range of 238 to 329 m2/g and d-spacings of the calcined materials directly depending on the length of the alkyl chain of the structure-directing agent. The preparation of sulphated mesoporous zirconia (ZrO x (SO4)2 -x) using alkyltrimethylammonium halides (alkyl = C n , n = 16, 18, 20) as the structure-directing agents and starting with Zr(SO4)4·4H2O resulted in materials with high surface areas (up to 390 m2/g de-pending on the alkyl chain length of the ammonium species). The pore structures of these materials collapsed on calcination at 500°C, but were stable on calcination at 500°C after treatment with phosphoric acid [23]. Stabilisation of the templated zirconium hydroxide with silica has been used to produce materials with surface areas of 580 to 680 m2/g for loadings ranging from 0.8 to 1.7 mol% Zr [24]. Pacheco and co-workers have used the anionic surfactants dodecyl sulphate and phosphate as structure-directing agents to prepare mesoporous zirconia, which, after drying at 140°C, had surface areas >400 m2/g [25, 26]. However, the structures collapsed after calcination at 500°C.

In order to produce catalytically active sulphated zirconia possessing high surface areas, the preparation of mesoporous silica impregnated with zirconia has been undertaken by a number of research groups. The isomorphic substitution of zirconium into the mesoporous silicas MCM-41 [2730], MCM-48 [31] and SBA-15 [3234] has been achieved through hydrothermal Si/Zr co-precipitation in the presence of the requisite templates. El Haskouri and co-workers prepared high zirconium content MCM-41 silicas using the structure-directing agent cetyltrimethylammonium bromide [CTAB] in basic conditions to afford materials with surface areas of 907 m2/g (Si/Zr = 32), 997 m2/g (Si/Zr = 10.0), 688 m2/g (Si/Zr = 5.0) and 382 m2/g (Si/Zr = 3.0). Ying et al. have prepared MCM-41 mesoporous silica-zirconia materials using CTAB as the organic template under highly acidic conditions (pH < 1) to obtain materials with zirconium loadings up to 19.6 wt.% (S.A. = 436 m2/g) [35]. These mesoporous silicas impregnated with zirconia have relatively low catalytic activities which have been attributed to their relatively weak acidity [27]. A combination of [Zr(OPr n )4], acetic acid to suppress rapid [Zr(OPr n )4] hydrolysis, and CTAB as a pore-directing agent, has also been used in the synthesis of nanocrystals of tetragonal ZrO2 with a mesoporous structure, stable after the surfactant was removed by calcinations at 500°C [36]. Monodisperse tetragonal ZrO2 nanocrystals can also be prepared in a non-hydrolytic reaction between [Zr(OPr n )4] and ZrCl4 in the presence of trioctylphosphine oxide at 340°C. The nanoparticle surface is suggested to be capped with the phosphine oxide [37].

Mesoporous materials are often effective catalysts or catalyst supports. However, few catalytic reactions require that the pores be regularly ordered. Since, in the case of ZrO2-derived materials, regular pore ordering of mesoporous materials frequently leads to thermally unstable materials, and given the high costs of the templates used in these syntheses, a more general strategy in catalyst syntheses is to concentrate on the mesoporosity, rather than on the pore ordering, of the catalytic materials. Ionic liquids have received much interest as templating agents during the last few years [3840], and we have recently demonstrated that ionic liquids could be used to prepare high surface area silicas with a sponge-like, three-dimensional topology [38] as well as to stabilise metal chalcoginide nanoparticles [41]. Accordingly, we reasoned that ionic liquids might be suitable media for the single-pot preparation of thermally stable, high surface area mesoporous silica-supported sulfated zirconia either as supported nanocrystals or with silicon isomorphically substituted by zirconium. We were also encouraged by the report of the incorporation of Zr into TUD-1 [4244], although these materials had not been sulphated. It is also of interest to investigate a mesoporous metarial not prepared via the intermediacy of atranes [45]. Our investigations, and the characterisation of the new materials, are described herein.

Materials and methods




Zirconyl chloride octahydrate, tetraethoxysilane [TEOS], tetraethylammonium hydroxide, hydrofluoric acid (48 wt.% in water, all Sigma Aldrich), boric acid, hydrochloric acid (35%, all Merck) and nitric acid (70%, Univar) were all used without further purification. Silicon (1,000 ppm) and zirconium (1,000 ppm) standards for inductively coupled plasma [ICP] analysis were obtained from Choice Analytical. 1-Hexadecyl-3-methylimdazolium bromide was prepared using a reported procedure [46].


The nitrogen adsorption and desorption isotherms at 77 K were measured using a Micromeritics ASAP2020 Surface Area and Porosity Analyzer (Micromeritics, Norcross, GA, U.S.A.). The data were obtained by liquid nitrogen adsorption and desorption at various nitrogen partial pressures and were analysed by the Barrett-Joyner-Halenda [BJH] and the Brunauer-Emmett-Teller [BET] methods. The pore size distribution curve was derived from the analysis of the adsorption branch of the isotherm.

Powder X-ray diffraction patterns were collected on a PANalytical X'Pert PRO X-ray diffractometer (PANalytical, Almelo, The Netherlands) using Cu Kα radiation and a PIXcel solid-state detector. Low-angle diffraction experiments were conducted in a continuous mode over the range of 1° to 10° 2θ using a step size of 0.040° 2θ with a count time/step of 26 s. Wide-angle diffraction patterns were recorded in the continuous scanning mode over the range 10° to 70° 2θ using a step size of 0.0131° 2θ with a count time/step of 300 s.

Metal and silicon concentrations were determined by ICP analyses, which were performed on a Varian Vista AX ICP-AES (Varian Inc., Melbourne, Vic., Australia). The samples were prepared in the following manner. Concentrated HNO3 (1 mL) and HF (2.5 mL, 48 wt.%) were added to a silica sample in a polyethylene bottle (20 to 30 mg, dried for 12 h at 100°C), and this mixture was stirred at room temperature for 8 h. Then, a saturated boric acid solution (20 mL) was added. The resulting solution was then diluted to 50 mL with deionised water.

Elemental analyses were performed at the Microanalytical Laboratories at the Australian National University using a Dionex Ion Chromotography Analyzer (Dionex, Sunnyvale, CA, U.S.A).

Transmission electron micrographs were recorded digitally with a Gtan slow-scan charge-coupled device using a Philips CM120 Biotwin electron microscope (Philips, Amsterdam, The Netherlands) operating at 120 kV. The samples were prepared by dispersing the powder products as an ethanol slurry, which was then deposited and dried on a holey carbon film on a Cu grid.

High-resolution transmission electron microscopy [HRTEM] was performed using a JEOL 3000F microscope (JOEL, Tokyo, Japan) operating at 300 kV. Specimens for HRTEM studies were dispersed in ethanol, accumulated on a copper holey carbon grid and dried at room temperature. The specimens were additionally evaporated with carbon in order to prevent excessive charging and decomposition of the sample under the electron beam. During the microscope session, the objective lens voltage was adjusted to sufficiently high underfocus values (~1,000 nm).

X-ray photoelectron spectroscopy [XPS] measurements were made using a SPECS spectrometer (SPECS Surface Nano Analysis GmbH., Berlin, Germany) equipped with Al X-ray source with monochromator operating at 200 W, a hemispherical analyser and a line delay detector with nine channels. Survey spectra were acquired for binding energies in the range 50 to 1,200 eV using a pass energy of 30 eV. O1s, Zr3p 3/2 and Si2 s region spectra were acquired at a pass energy of 23 eV with ten scans to obtain a higher spectral resolution (0.1-eV step) and to lower the noise level. Analysis of spectra was done using CASA software.

Catalytic reactions were monitored with a Shimadzu GC-17A gas chromatograph [GC] (Shimadzu Corp., Kyoto, Japan) fitted with an SGE capillary column (BPX5, 30 m × 0.25 mm × 0.25 μm) after calibration with mesitylene as internal standard.


Zirconium oxide was prepared by the addition of water to an ethanolic solution of zirconium butoxide such that Zr/H2O was 1:2. Immediately, a white gel was formed. The sample was dried and calcined at 450°C for 2 h. The surface area of this material was found to be 90.7 m2/g.

A typical synthesis of the mesoporous sulphated zirconia materials with various Si/Zr molar ratios was performed as follows: 1-Hexadecyl-3-methylimidazolium bromide (0.8 g, 2.23 mmol) was dissolved in aqueous dilute HCl (25 mL, 2 M, 0.05 mol) and to this solution was added TEOS (1.7 g, 8.16 mmol). The mixture was stirred at 40°C for 4 h and then the required amount of ZrOCl2·8H2O added to the stirred mixture. The resulting mixture was then stirred at 40°C for 20 h. The mixture was then transferred into an autoclave and heated at 100°C for 2 days. The pH of the synthesis gel was adjusted to 7.5 by dropwise addition of aqueous ammonia at room temperature. The resulting mixture was hydrothermally treated at 100°C for another 2 days. The final solid was collected by filtration, washed with water until no chloride was detected in the washings and dried at room temperature. The solids obtained were impregnated with aqueous H2SO4 (0.5 M, 25 mL) at room temperature for 30 min. The sulfated samples were then filtered, dried at 100°C and calcined at 550°C in air for 10 h.

General procedure for the Meerwin-Ponndorf-Verley reductions

All reductions were performed under a nitrogen atmosphere at 80°C. SZ-SiO2 (8, 25 mg) was added to a two-necked flask prior to the addition of 2-propanol (4 mL) and mesitylene (0.1 mL, internal standard) and the reaction mixture heated to 80°C. When the desired temperature was reached, the ketone or aldehyde (2 mmol) was added. The reaction was monitored by taking small samples (~0.1 mL). The samples were centrifuged to remove the catalyst and diluted with hexane prior to analysis by GC.

Results and discussion

The mesoporous silicas impregnated with sulphated zirconia (2 to 9) were prepared using a modification of the method described by Du et al. [47]. The method (schematically represented in Figure 1) involved the hydrolysis of the silica precursor (TEOS) in dilute HCl in the presence of the template 1-hexadecyl-3-methylimdazolium bromide at 40°C for 4 h, after which time the required amount of ZrOCl2·8H2O was added to achieve the desired Si/Zr ratio. In addition, a purely siliceous material (1) was prepared using an identical process. This synthesis differs from that of Zr-TUD-1 in that it does not proceed through silatrane intermediates [45].

Figure 1

Schematic representation of the syntheses of SZ-SiO 2 materials.

Zirconium oxychloride, used in these syntheses, is present as the tetranuclear species [Zr4(OH)8(H2O)16]8+ in the crystal [48] and in aqueous solution [49] at low pH. It has been shown that the more acidic the solution, the less polymerisation to higher molecular weight species occurs [50]. Hence, at pH ~1 used herein, it can be expected that the zirconium species is predominately the tetramer. From the mechanistic point of view, it can be speculated that the synthesis of mesoporous sulphated zirconia using [C16MIM]Br as the templating agent is mediated by the presence of Br-/Cl- ions in the synthesis mixture, as was observed by Wong et al. [35] in the analogous CTAB templated system. In such a case, the synthesis was shown to proceed by a S+X-I+ pathway [35], where S+ stands for the [C16MIM] cation, X- for the Br- anion and I+ for the cationic zirconium species [51, 52].

Nitrogen adsorption/desorption isotherms recorded at 77 K reveal classic type IV curves, which indicate the materials to be mesoporous in nature. Such materials have pore sizes in the range of 2 to 50 nm, and type IV isotherms which exhibit hysteresis indicate that capillary condensation occurs during the adsorption process. The surface area, pore volume and pore size data of mesoporous sulphated silica-zirconia samples are presented in Table 1. The BET surface area and pore volumes show the expected decreases with increasing zirconia content: the surface areas decrease from 482 to 343 m2/g and the pore volumes de-crease from 1.343 to 0.4290 cm3/g. The silica prepared without any zirconium added had a surface area of 709 m2/g and a pore volume of 0.819 cm3/g.

Table 1 Physical properties of the prepared mesoporous sulphated silica-zirconia materials

The ratio of zirconia to silica was measured using ICP optical emission spectroscopy [ICP-OES] analysis. As seen in Table 1, there is a significant loss of the added zirconium as a result of the washing process. In the case of the SZ-SiO2 materials with the lowest Zr loadings (i.e. 2 to 5), only 31% to 49% of the added zirconium was incorporated into the final product. At the higher loadings, however, there is a significant increase in the incorporation of the zirconium: Silicas 6 to 9 have incorporation levels between 61% and 69%. As a consequence, zirconium loadings range from 1.01 to 41.40 wt.%.

Sulfur loadings were determined by elemental analysis of the prepared materials. As expected, the sulfur content of the materials increases with zirconium loading (Table 1). In the case of 5, the sulfur loading is lower than expected and may indicate the presence of larger ZrO2 domains, compared to that of 4, which has resulted in a lower available surface area for sulfate coordination. However, the amounts of sulfur are low for all materials, indicating that the concentration of zirconium at the surface is low. In this work, the highest sulfur loading is 1.69 wt.% for material 9 which has a zirconium loading of 61.5 wt.%. The sulfur loadings for the sulfated zirconia-silica materials prepared by Du and co-workers range from 1.96 to 3.88 wt.% for zirconium contents ranging from 20.1 to 33.8 wt.% [34].

The lack of a significant peak at low angle suggests little long-range mesostructure in the material [21, 53]. The diminution in peak intensity compared to the purely siliceous material 1 is attributable to the decrease in pore size and the filling of the mesopores with zirconium oxide nanoparticles at the highest loadings. The absence of additional absorptions at low angle indicates that there is no ordering within the silica. The high-angle (2θ > 10°) X-ray diffraction patterns of the mesoporous SZ-SiO2 materials 2 to 9 (Figure 2) reveal a broad peak from 20° to 35° 2θ which is due to the amorphous nature of the silica support. In the case of 8 and 9, this peak is significantly broadened compared to that observed for materials 2 to 6, and this broadness may be due to the significant amounts of zirconium that have been incorporated into the silica framework. In all cases, there is no diffraction associated with a crystalline phase of ZrO2, indicating no bulk crystalline zirconia is present.

Figure 2

High-angle X-ray diffraction patterns of the prepared sulphated zirconia-silica materials.

XPS was used to probe the surface composition of the SZ-SiO2 materials. As seen in Table 2, the Zr surface concentrations for materials 2 to 7 are relatively low, indicating that the bulk of the zirconia is located within the silica matrix. The relative concentrations of zirconia increase considerably for silicas 8 and 9 which possess ZrO2 nanocrystallites on the surface of the silica (vide infra). Assuming that the silicon present within the samples is present as silica and setting the Si2p binding energy at 103.6 eV (the value for SiO2) [54], then the binding energy for Zr3d 5/2 has a corrected value between 182.8 and 183.7 eV. These values are higher than for bulk ZrO2 (182.2 eV) and closer to that of ZrSiO4 and of Zr in Zr-TUD-1 (183.3 and 183.2 eV, respec-tively) [44, 55]. Similarly, the O1 s values are in the range of 531.7 to 532.3 eV, which are significantly higher than the binding energy seen in ZrO2 but approximate those in Zr-TUD-1 and in SiO2 (530.2, 532.4 and 532.9 eV, respectively) [44, 55]. The use of XPS to probe the S2p binding energy was not possible due to the low sulfur loadings (as determined by elemental analysis), which resulted in the observed peak having poor signal-to-noise ratio.

Table 2 Relative concentrations of O, Zr and Si (%) at the surface of the SZ-SiO2 materials as determined by XPS

The TEM images of the SZ-SiO2 samples 3, 4 and 8 are shown in Figure 3. As seen from these images, silica does not possess long-range order, which is consistent with our observations when using similar templates to produce high surface area mesoporous silica [38]. In addition, no large clusters of nanoparticulate zirconia are visible at the magnifications used, which indicates that the zirconia is present as either very small nanoparticles or incorporated into the silica framework.

Figure 3

Representative TEM images of the prepared SZ-SiO 2 samples. a Silica 3 (1.34 wt.% Zr). b Silica 4 (2.43 wt.% Zr). c Silica 8 (27.77 wt.% Zr).

The dark field and HRTEM images of several of the sulphated zirconia-silica samples are shown in Figure 4. Dark field images show strong atomic number (Z) contrast, thus allowing heavier elements to be visualized. Hence, the dark field image of 7 (Figure 4a) shows the dispersion of the Zr atoms within the silicon matrix and is representative of similar images obtained for materials 8 and 9 (not shown). In all of the TEM images, small crystalline particles associated with the walls of the silica surface are observable. In the case of silica 7, it was very difficult to observe the very small crystalline ZrO2 particles in the HRTEM, but careful analysis of the electron diffraction pattern clearly indicates that polydispersed ZrO2 particles are present. From the diffraction pattern, it is evident that the material is polycrystalline with some crystal orientation evident. The HRTEM images of 8 and 9 clearly show the crystalline phase of ZrO2 on the surface of the silica, with the particles being in the size range of 5 to 10 nm.

Figure 4

HRTEM images of the prepared SZ-SiO 2 samples 7 to 9. a Dark field image of silica 7 (26.89 wt.% Zr). b Silica 8 (27.77 wt.% Zr). c Silica 9 (41.40 wt.% Zr).

Preliminary screening of the catalytic activity of these materials was probed using the Meerwin-Ponndorf-Verley reductions [56] of aldehydes and ketones as a test reaction and SZ-SiO2 (27.77 wt.% Zr (8)) as a representative material, containing both nanoparticulate SZ-SiO2 and framework zirconium. This reaction and its reverse, the Oppenheimer oxidation, have been catalysed by calcined hydrous zirconium oxide [5760]. The results using SZ-SiO2 (8) are collected in Table S1 in Additional file 1.

Sample SZ-SiO2 (8) catalyses the Meerwin-Ponndorf-Verley reductions of a representative aldehyde (benzaldehyde) and a ketone (acetophenone). The conversions are comparable to those using Zr-TUD-1 as catalyst [42]. The activity of the catalyst appears to correlate with the pK HB of the substrate [61], inasmuch as substrates with pK HB > 1.10 are inactive. Although we observe no detectable reaction of cinnamaldehyde with 2-propanol over 20 h, this reaction is slow, even with ZrO2 catalysts of 'moderate activity' [62].


This study has shown that 1-hexadecyl-3-methylimidazolium bromide can be successfully used as the structure-directing agent in the synthesis of mesoporous sulphated zirconia. The materials, prepared with varying ratios of zirconium to silica, displayed surface areas in the range of 343 to 482 m2/g and mesopore volume ranging from 0.43 to 1.34 cm3/g. This method of preparation of the SZ-SiO2 materials for loadings up to 41 wt.% Zr resulted in the formation of nanocrystalline zirconia in the silica host, with the zirconium also present as polydispersed nanoparticles of ZrO2 on the surface at the higher loadings. The materials are active in the catalysis of the Meerwin-Ponndorf-Verley reductions of aldehydes and ketones with pK HB values <1.1.


  1. 1.

    Reddy BM, Patil MK: Organic syntheses and transformations catalyzed by sulfated zirconia. Chem Rev 2009, 109: 2185–2208. 10.1021/cr900008m

    Article  Google Scholar 

  2. 2.

    Corma A: Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 1995, 95: 559–614. 10.1021/cr00035a006

    Article  Google Scholar 

  3. 3.

    Corma A, García H: Lewis Acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem Rev 2003, 103: 4307–4366. 10.1021/cr030680z

    Article  Google Scholar 

  4. 4.

    Yamaguchi T: Recent progress in solid superacids. App Catal 1990, 61: 1–25. 10.1016/S0166-9834(00)82131-4

    Article  Google Scholar 

  5. 5.

    Arata K: Solid Superacids. Adv Catal 1990, 37: 165–211. full_text

    Google Scholar 

  6. 6.

    Holm VCF, Bailey GC: US Patent 3032599. 1962.

    Google Scholar 

  7. 7.

    Hino M, Arata K: Solid catalysts treated with anions. I. Catalytic activity of iron oxide treated with sulfate ion for dehydration of 2-propanol and ethanol and polymerization of isobutyl vinyl ether. Chem Lett 1979, 477–480. 10.1246/cl.1979.477

    Google Scholar 

  8. 8.

    Song X, Sayari A: Sulfated zirconia-basedstrong solid-acid catalysts:Recent progress. Catal Rev 1996, 38: 329–412. 10.1080/01614949608006462

    Article  Google Scholar 

  9. 9.

    Yamaguchi T: Zirconium in catalysis. Application of ZrO 2 as a catalyst and a catalyst support. Catal Today 1994, 20: 199–217. 10.1016/0920-5861(94)80003-0

    Article  Google Scholar 

  10. 10.

    Hino M, Kobayashi S, Arata K: Solid catalyst treated with anion. 2. Reactions of butane and isobutane catalyzed by zirconium oxide treated with sulfate ion. Solid superacid catalyst. J Am Chem Soc 1979, 101: 6439–6441. 10.1021/ja00515a051

    Article  Google Scholar 

  11. 11.

    Corma A, Martinez A, Martinez C: Influence of process variables on the continuous alkylation of isobutane with 2-butene on superacid sulfated zirconia catalysts. J Catal 1994, 149: 52–60. 10.1006/jcat.1994.1271

    Article  Google Scholar 

  12. 12.

    Negelein DL, Lin R, White RL: Effects of catalyst acidity and HZSM-5 channel volume on polypropylene cracking. J Appl Polym Sci 1998, 67: 341–348. 10.1002/(SICI)1097-4628(19980110)67:2<341::AID-APP15>3.0.CO;2-0

    Article  Google Scholar 

  13. 13.

    Kurosaka T, Matsuhashi H, Arata K: Dehydrogenative coupling of cethane catalyzed by platinum-added sulfated zirconia and characterization of the catalyst surface. J Catal 1998, 179: 28–35. 10.1006/jcat.1998.2209

    Article  Google Scholar 

  14. 14.

    Cheung T-K, Gates BC: Activation of ethane in the presence of solid acids: Sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and zeolites. J Catal 1997, 168: 522–531. 10.1006/jcat.1997.1654

    Article  Google Scholar 

  15. 15.

    Pârvulescu V, Coman S, Grange P, Pârvulescu VI: Preparation and characterization of sulfated zirconia catalysts obtained via various procedures. Appl Catal A: General 1999, 176: 27–43.

    Article  Google Scholar 

  16. 16.

    Escalona Platero E, Peñarroya Mentruit M: IR characterization of sulfated zirconia derived from zirconium sulfate. Catal Lett 1995, 30: 31–39. 10.1007/BF00813670

    Article  Google Scholar 

  17. 17.

    Escalona Platero E, Peñarroya Mentruit M, Otero Aréan C, Zecchina A: FTIR studies on the acidity of sulfated zirconia prepared by thermolysis of zirconium sulfate. J Catal 1996, 162: 268–276. 10.1006/jcat.1996.0284

    Article  Google Scholar 

  18. 18.

    Reddy JS, Sayari A: Nanoporous zirconium oxide prepared using the supramolecular templating approach. Catal Lett 1996, 38: 219–223. 10.1007/BF00806572

    Article  Google Scholar 

  19. 19.

    Kim A, Bruinsma P, Chen Y, Wang L-Q, Liu J: Amphoteric surfactant templating route for mesoporous zirconia. Chem Commun 1997, 161–162. 10.1039/a604578b

    Google Scholar 

  20. 20.

    Yuan Z-Y, Vantomme A, Léonard A, Su B-L: Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chem Commun 2003, 1558–1559. 10.1039/b303272h

    Google Scholar 

  21. 21.

    Huang Y-Y, McCarthy TJ, Sachtler WMH: Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure. Appl Catal A: General 1996, 148: 135–154. 10.1016/S0926-860X(96)00223-2

    Article  Google Scholar 

  22. 22.

    Knowles JA, Hudson MJ: Preparation and characterization of mesoporous, high surface area zirconium(IV) oxides. J Chem Soc Chem Commun 1995, 2083–2084. 10.1039/c39950002083

    Google Scholar 

  23. 23.

    Ciesla U, Schacht S, Stucky GD, Unger KK, Schüth F: Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew Chem Int Ed Engl 1996, 35: 541–543. 10.1002/anie.199605411

    Article  Google Scholar 

  24. 24.

    Ivanova AV, Lysenko SV, Baranova SV, Sungurov AV, Zangelov TN, Karakhanov EA: Thermally stable materials based on mesostructured sulfated zirconia. Micropor and Mesoporous Mater 2006, 91: 254–260. 10.1016/j.micromeso.2005.12.006

    Article  Google Scholar 

  25. 25.

    Pacheco G, Zhao E, Garcia A, Sklyarov A, Fripiat JJ: Syntheses of mesoporous zirconia with anionic surfactants. J Mater Chem 1998, 8: 219–226. 10.1039/a703819d

    Article  Google Scholar 

  26. 26.

    Zhao E, Hernández O, Pacheco G, Hardcastle S, Fripiat JJ: Thermal behaviour and texture of mesoporous zirconia obtained from anionic surfactants. J Mater Chem 1998, 8: 1635–1640. 10.1039/a801567h

    Article  Google Scholar 

  27. 27.

    Occelli ML, Biz S, Auroux A: Effects of isomorphous substitution of Si with Ti and Zr in mesoporous silicates with the MCM-41 structure. Appl Catal A: General 1999, 183: 231–239. 10.1016/S0926-860X(99)00059-9

    Article  Google Scholar 

  28. 28.

    Jones DJ, Jiménez-Jiménez J, Jiménez-López A, Maireles-Torres P, Olivera-Pastor P, Rodriguez-Castellón E, Roziére J: Surface characterisation of zirconium-doped mesoporous silica. J Chem Soc Chem Commun 1997, 431–432.

    Google Scholar 

  29. 29.

    El Haskouri J, Cabrera S, Guillem C, Latorre J, Beltran A, Beltran D, Maros MD, Amoros P: Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chem Mater 2002, 14: 5015–5022. 10.1021/cm020131u

    Article  Google Scholar 

  30. 30.

    Wang XX, Lefebvre F, Patarin J, Basset JM: Synthesis and characterization of zirconium containing mesoporous silicas I. Hydrothermal synthesis of Zr-MCM-41-type materials. Micropor and Mesoporous Mater 2001, 42: 269–276. 10.1016/S1387-1811(00)00329-2

    Article  Google Scholar 

  31. 31.

    Morey MS, Stucky GD, Schwarz S, Froba M: Isomorphic substitution and postsynthesis incorporation of zirconium into MCM-48 mesoporous silica. J Phys Chem B 1999, 103: 2037–2041. 10.1021/jp980844t

    Article  Google Scholar 

  32. 32.

    Newalkar BL, Olanrewaju J, Komarneni S: Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica. J Phys Chem B 2001, 105: 8356–8360. 10.1021/jp010889l

    Article  Google Scholar 

  33. 33.

    Chen S-Y, Jang L-Y, Cheng S: Synthesis of Zr-incorporated SBA-15 mesoporous materials in a self-generated acidic environment. Chem Mater 2004, 16: 4174–4180. 10.1021/cm049247b

    Article  Google Scholar 

  34. 34.

    Du Y, Sun Y, Di Y, Z L, Liu S, Xiao F-S: Ordered mesoporous sulfated silica-zirconia materials with high zirconium contents in the structure. J Porous Mater 2006, 13: 163–171. 10.1007/s10934-006-7026-5

    Article  Google Scholar 

  35. 35.

    Wong MS, Huang HC, Ying JY: Supramolecular-templated synthesis of nanoporous zirconia-silica catalysts. Chem Mater 2002, 14: 1961–1973. 10.1021/cm010076+

    Article  Google Scholar 

  36. 36.

    Mondal A, Zachariah A, Nayak P, Nayak BB: Synthesis and room temperature photoluminescence of mesoporous zirconia with a tetragonal nanocrystalline framework. J Am Ceramic Soc 2009, 93: 387–392. 10.1111/j.1551-2916.2009.03396.x

    Article  Google Scholar 

  37. 37.

    Joo J, Yu T, Kim YW, Park HM, Wu F, Zhang JZ, Hyeon T: Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. J Am Chem Soc 2003, 125: 6553–6557. 10.1021/ja034258b

    Article  Google Scholar 

  38. 38.

    Pujari AA, Chadbourne JJ, Ward AJ, Costanzo L, Masters AF, Maschmeyer T: The use of acidic task-specific ionic liquids in the formation of high surface area mesoporous silica. New J Chem 2009, 33: 1997–2000. 10.1039/b907077j

    Article  Google Scholar 

  39. 39.

    Trewyn BG, Whitman CM, Lin VS-Y: Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled relaes of antibacterial agents. Nano Lett 2004, 4: 2139–2143. 10.1021/nl048774r

    Article  Google Scholar 

  40. 40.

    Adams CJ, Bradley AE, Seddon KR: The synthesis of mesoporous materials using novel ionic liquid templates in water. Aust J Chem 2001, 54: 679–681. 10.1071/CH01191

    Article  Google Scholar 

  41. 41.

    Maschmeyer T, Che M: Catalytic aspects of light-induced hydrogen generation in water with TiO 2 and other photocatalysts: A simple and practical way towards a normalization? Angew Chem Int Ed Engl 2010, 49: 1536–1539. 10.1002/anie.201004872

    Article  Google Scholar 

  42. 42.

    Ramanathan A, Klomp D, Petersa JA, Hanefeld U: Zr-TUD-1: A novel heterogeneous catalyst for the Meerwein-Ponndorf-Verley reaction. J Mol Catal A: Chemical 2006, 260: 62–69. 10.1016/j.molcata.2006.06.057

    Article  Google Scholar 

  43. 43.

    Telalović S, Ng JF, Maheswari R, Ramanathan A, Chuah GK, Hanefeld U: Synergy between Brønsted acid sites and Lewis acid sites. Chem Commun 2008, 4631–4633.

    Google Scholar 

  44. 44.

    Ramanathan A, Villalobos MCC, Kwakernaak C, Telalovic S, Hanefeld U: Zr-TUD-1: A Lewis acidic, three-dimensional, mesoporous, zirconium-containing catalyst. Chem Eur J 2008, 14: 961–972. 10.1002/chem.200700725

    Article  Google Scholar 

  45. 45.

    Telalović S, Ramanathan A, Mul G, Hanefeld U: TUD-1: synthesis and application of a versatile catalyst, carrier, material... J Mater Chem 2010, 20: 642–658.

    Article  Google Scholar 

  46. 46.

    Demberelnyamba D, Kim K-S, Choi S, Park S-Y, Lee H, Kim C-J, Yoo I-D: Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorgan Med Chem 2004, 12: 853–857. 10.1016/j.bmc.2004.01.003

    Article  Google Scholar 

  47. 47.

    Du Y, Sun Y, Di Y, Zhao L, Liu S, Xiao F-S: Ordered mesoporous sulfated silica-zirconia materials with high zirconium contents in the structure. J Porous Mater 2006, 13: 163–171. 10.1007/s10934-006-7026-5

    Article  Google Scholar 

  48. 48.

    Clearfield A, Vaughan PA: The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate. Acta Cryst 1956, 9: 555–558. 10.1107/S0365110X56001558

    Article  Google Scholar 

  49. 49.

    Walther C, Rothe J, Fuss M, Büchner S, Koltsov S, Bergmann T: Investigation of polynuclear Zr(IV) hydroxide complexes by nanoelectrospray mass-spectrometry combined with XAFS. Anal Bioanal Chem 2007, 388: 409–431. 10.1007/s00216-007-1223-1

    Article  Google Scholar 

  50. 50.

    Clearfield A, Serrette GPD, Khazi-Syed AH: Nature of hydrous zirconia and sulfated hydrous zirconia. Catal Today 1994, 20: 295–312. 10.1016/0920-5861(94)80008-1

    Article  Google Scholar 

  51. 51.

    Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schüth F, Stucky GD: Generalized synthesis of periodic surfactant/inorganic composite materials. Nature (London) 1994, 368: 317–321. 10.1038/368317a0

    Article  Google Scholar 

  52. 52.

    Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF: Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 1994, 6: 1176–1191. 10.1021/cm00044a016

    Article  Google Scholar 

  53. 53.

    Jansen JC, Shan Z, Marchese L, Zhou W, v d Puil N, Maschmeyer T: A new templating method for three-dimensional mesopore networks. Chem Commun 2001, 713–714. 10.1039/b101000j

    Google Scholar 

  54. 54.

    Armelao L, Bertagnolli H, Bleiner D, Groenewolt M, Gross S, Krishnan V, Sada C, Schubert U, Tondello E, Zattin A: Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: First xxample of a ZrO 2 -HfO 2 -SiO 2 ternary oxide system. Adv Funct Mater 2007, 17: 1671–1681. 10.1002/adfm.200600458

    Article  Google Scholar 

  55. 55.

    Infantes-Molina A, Mérida-Robles J, Maireles-Torres P, Finocchio E, Busca G, Rodríguez-Castillón E, Fierro JLG, Jiménez-López A: A new low-cost synthetic route to obtain zirconium containing mesoporous silica. Micropor and Mesoporous Mater 2004, 75: 23–32. 10.1016/j.micromeso.2004.06.025

    Article  Google Scholar 

  56. 56.

    Boronat M, Corma A, Renz M: Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts. J Phys Chem B 2006, 110: 21168–21174. 10.1021/jp063249x

    Article  Google Scholar 

  57. 57.

    Shibagaki M, Takahashi K, Kuno H, Kawakami H, Matsushita H: Vapor-phase reduction of aldehydes and ketones with 2-propanol over hydrous zirconium oxide. Chem Lett 1988, 17: 1633–1636. 10.1246/cl.1988.1633

    Article  Google Scholar 

  58. 58.

    Shibagaki M, Takahashi K, Matsushita H: The catalytic reduction of aldehydes and ketones with 2-propanol over hydrous zirconium oxide. Bull Chem Soc Jpn 1988, 61: 3283–3288. 10.1246/bcsj.61.3283

    Article  Google Scholar 

  59. 59.

    Kuno H, Takahashi K, Shibagaki M, Shimazaki K, Matsushita H: Oxidation of secondary alcohols over hydrous zirconium(IV) oxide. Bull Chem Soc Jpn 1990, 63: 1943–1946. 10.1246/bcsj.63.1943

    Article  Google Scholar 

  60. 60.

    Liu SH, Jaenicke S, Chuah GK: Hydrous zirconia as a selective catalyst for the Meerwein-Ponndorf-Verley reduction of cinnamaldehyde. J Catal 2002, 206: 321–330. 10.1006/jcat.2001.3480

    Article  Google Scholar 

  61. 61.

    Besseau F, Lucon M, Laurence C, Berthelot M: Hydrogen-bond basicity pKH B scale of aldehydes and ketones. J Chem Soc Perkin Trans 2 1998, 101–107. 10.1039/a704427e

    Google Scholar 

  62. 62.

    Urbano FJ, Romero R, Aramendía MA, Marinas A, Marinas JM: An insight into the Meerwein-Ponndorf-Verley reduction of α,β-unsaturated carbonyl compounds: Tuning the acid-base properties of modified zirconia catalysts. J Catal 2009, 268: 79–88. 10.1016/j.jcat.2009.09.005

    Article  Google Scholar 

Download references


We thank the Australian Research Council for funding. Presented at OANANO, 30-31 August 2010.

Author information



Corresponding author

Correspondence to Thomas Maschmeyer.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AJW prepared and characterized materials and performed catalytic studies. AAP prepared and characterized materials. LC recorded TEM images. AFM and TM conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Electronic supplementary material

Authors’ original submitted files for images

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ward, A.J., Pujari, A.A., Costanzo, L. et al. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia. Nanoscale Res Lett 6, 192 (2011).

Download citation


  • Zirconium
  • Ionic Liquid
  • Mesoporous Silica
  • Sulphated Zirconia
  • Zirconium Hydroxide