Skip to main content
Account

Table 1 Specific surface area, pore volume, secondary particle size, and element contents of Ni catalyst supported on ZrO2-based porous spheres

From: One-Step Solvothermal Synthesis of Ni Nanoparticle Catalysts Embedded in ZrO2 Porous Spheres to Suppress Carbon Deposition in Low-Temperature Dry Reforming of Methane

Materials1)

Secondary Particle size2) (nm)

Specific surface area3) (m2/g)

Pore volume4) (cm3/g)

Element content5)

  

Before H2 reduction

After H2 reduction

Ni5,6)

Si5,7)

Mg5,7)

Y5,7)

Zr5,7)

L-Ni@ZrO2

602 ± 63

71

4

 < 0.1

9.5

100

L-Ni@SiO2-ZrO2

700 ± 61

135

2

 < 0.1

8.4

5.6

94.4

L-Ni@MgO-ZrO3

618 ± 59

114

6

0.18

8.9

11.9

88.1

L-Ni@Y2O3-ZrO2

710 ± 120

238

4

0.88

6.58)

9.08)

91.08)

S-Ni@ZrO2

120 ± 50

179

140

0.87

9.0

100

S-Ni@SiO2-ZrO2

63 ± 189)

269

196

0.47

9.0

6.1

93.9

S-Ni@MgO-ZrO2

83 ± 25

167

151

0.28

6.6

11.5

98.5

S-Ni@Y2O3-ZrO2

115 ± 36

267

130

0.35

6.58)

9.68)

90.48)

U-Ni/ZrO210)

11)

76

73

0.36

8.2

L-Ni/ZrO212)

1340 ± 130

20

3

 < 0.1

8.4

  1. 1) Materials were used after calcination in air at 300 °C for 1 h. 2) As prepared materials. Evaluated by SEM images of at least 100 particles. 3) Brunauer–Emmett–Teller method. 4) BJH method. 5) Fluorescent X-ray analysis. 6) Weight %. 7) Atomic ratio of Si, Mg, or Y vs. Zr. 8) ICP-OES method. 9) Evaluated by TEM images of at least 100 particles. 10) Ni NPs were supported on commercially available ZrO2 (UEP-100) by impregnation method. 11) Not measured. 12) Ni NPs were supported by an impregnation on ZrO2 porous spheres obtained by a solvothermal method

Navigation